
An Efficient Certificateless Proxy Re-Encryption
Scheme Without Pairing

S. Sharmila Deva Selvi, Arinjita Paul(B), and Chandrasekaran Pandu Rangan

Theoretical Computer Science Lab, Department of Computer Science
and Engineering, Indian Institute of Technology Madras, Chennai, India

{sharmila,arinjita,prangan}@cse.iitm.ac.in

Abstract. Proxy re-encryption (PRE) is a cryptographic primitive
introduced by Blaze, Bleumer and Strauss [4] to provide delegation of
decryption rights. PRE allows re-encryption of a ciphertext intended for
Alice (delegator) to a ciphertext for Bob (delegatee) via a semi-honest
proxy, who should not learn anything about the underlying message. In
2003, Al-Riyami and Patterson introduced the notion of certificateless
public key cryptography which offers the advantage of identity-based
cryptography without suffering from key escrow problem. The exist-
ing certificateless PRE (CLPRE) schemes rely on costly bilinear pairing
operations. In ACM ASIA-CCS SCC 2015, Srinivasan et al. proposed
the first construction of a certificateless PRE scheme without resorting
to pairing in the random oracle model. In this work, we demonstrate
a flaw in the CCA-security proof of their scheme. Also, we present the
first construction of a CLPRE scheme without pairing which meets CCA
security under the computational Diffie-Hellman hardness assumption in
the random oracle model.

Keywords: Proxy re-encryption · Pairing-less · Public key · Certifi-
cateless · Unidirectional

1 Introduction

Due to segregation of data ownership and storage, security remains as one of the
major concerns in public cloud scenario. In order to protect the stored data from
illegal access and usage, users encrypt their data with their public keys before
storing it in the cloud. To enable sharing of stored data, a naive approach would
be that a user Alice shares her secret key with a legitimate user Bob. However,
this would compromise the privacy of Alice. As a solution towards providing
delegation of decryption rights, Blaze et al. [4] in 1998 proposed the concept

S. Sharmila Deva Selvi—Postdoctoral researcher supported by Project No.
CCE/CEP/22/VK&CP/CSE/14-15 on Information Security & Awareness (ISEA)
Phase-II by Ministry of Electronics & Information Technology, Government of India.
A. Paul and C. Pandu Rangan—Work partially supported by Project No.
CCE/CEP/22/VK&CP/CSE/14-15 on ISEA-Phase II.

c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 413–433, 2017.
https://doi.org/10.1007/978-3-319-68637-0_25

414 S. Sharmila Deva Selvi et al.

of proxy re-encryption, which allows a proxy server with special information
(re-encryption key) to translate a ciphertext for Alice into another ciphertext
(with the same message) for Bob without learning any information about the
underlying plaintext. Besides, this approach offloads the costly burden of secure
data sharing from Alice to the resource-abundant proxy. As Alice delegates her
decryption rights to Bob, Alice is termed as delegator and Bob as delegatee. Ever
since, PRE has found a lot of applications such as encrypted email forwarding,
distributed file systems, digital rights management (DRM) of Apple’s iTunes,
outsourced filtering of encrypted spam and content distribution [2,3].

Based on the direction of delegation, PRE schemes are classified into uni-
directional and bidirectional schemes. In unidirectional schemes, a proxy can
re-encrypt ciphertexts from Alice to Bob but not vice-versa, while in the bidi-
rectional schemes, the proxy is allowed to re-encrypt ciphertexts in both direc-
tions. PRE schemes are also classified into single-hop and multihop schemes.
In a single-hop scheme, a proxy cannot re-encrypt ciphertexts that have been
re-encrypted once. In a multi-hop scheme, the proxy can further re-encrypt the
re-encrypted ciphertexts. In this paper, we focus on single-hop unidirectional
PRE schemes.

Several PRE constructions have been proposed in the literature, either in the
Public Key Infrastructure (PKI) or identity based (IBE) setting. The schemes in
the PKI setting entrusts a third party called the Certification Authority (CA) to
assure the authenticity of a user’s public key by digitally signing it and issuing
Digital Certificates. However, the overhead involved in the revocation, storage
and distribution of certificates has long been a concern, which makes public key
cryptography inefficient. As a solution to the authenticity problem, Identity-
based cryptography was introduced by Shamir in 1984 [9], which involves a
trusted third party called the Private Key Generator (PKG) to generate secret
keys of all users. Yet again, due to the unconditional trust placed on the PKG,
identity based cryptography suffers from key-escrow problem. To avoid both cer-
tificate management problem in the PKI setting and key-escrow problem in
the ID-based setting, certificateless cryptography was introduced in 2003 by
Al-Riyami and Patterson [1]. Certificateless cryptography splits the task of key-
generation of a user between a semi-trusted entity called Key Generation Center
(KGC) and the user himself. This approach no longer relies on the use of certifi-
cates for key authenticity and hence does not suffer from certificate management
problem. Also, the KGC does not have access to the secret keys of the users,
which addresses the key-escrow problem inherent in IBE setting.

In this paper, we study proxy re-encryption in the light of certificateless
public key cryptography. Consider the following scenario where Alice stores her
encrypted data in the cloud, which provides services to billions of users. The num-
ber of cloud users being large, certificate management for public key authenticity
is an overhead. This makes proxy re-encryption in PKI setting unfit for cloud ser-
vices. On the other hand, a malicious PKG, entrusted with the power to generate
user secret keys, can decrypt confidential data of the users due to which PRE in

An Efficient Certificateless Proxy Re-Encryption Scheme Without Pairing 415

IBE setting is highly impractical. Certificateless PRE affirmatively solves both the
certificate management problem and key-escrow problem in the above scenario.

1.1 Related Work and Contribution

While several schemes achieving PRE have been proposed in the literature, a
majority of these schemes are either in the PKI or IBE setting. In 2010, Sur et al.
[11] introduced the notion of certificateless proxy re-encryption (CLPRE) and
proposed a CCA secure CLPRE scheme in the random oracle model. However,
in 2013, their scheme was shown to be vulnerable to chosen ciphertext attack
by Zheng et al. [13]. In 2013, Guo et al. [6] proposed a CLPRE scheme in the
random oracle model based on bilinear pairing which satisfies RCCA-security, a
weaker notion of security. In 2014, Yang, Xu and Zhang [12] proposed a pairing-
free CCA-secure CLPRE scheme in the random oracle model, which was shown
to be vulnerable to chain collusion attack in [10]. In 2015, Srinivasan et al. [10]
proposed the first CCA-secure unidirectional certificateless PRE scheme without
pairing under the computational Diffie-Hellman assumption in the random oracle
model. In this paper, we expose a critical weakness in the security proof of the
scheme and provide a potential fix to make the scheme provably secure.

Another major contribution of this work is we propose an efficient pairing-
free unidirectional single-hop certificateless proxy re-encryption scheme in the
random oracle model. As stated, all the existing CLPRE schemes are vulnerable
to attacks except for [6]. The CLPRE scheme due to Guo et al. [6] is based on
bilinear pairing which is an expensive operation as compared to modular expo-
nentiation operations in finite fields. Besides, their scheme [6] satisfies a weaker
notion of security, namely RCCA-security and is based on q-weak Decisional
Bilinear Assumption. Our scheme satisfies CCA security against both Type-I
and Type-II adversaries and is based on a much standard assumption called the
Computational Diffie Hellman (CDH) assumption.

2 Definition and Security Model

2.1 Definition

We describe the syntactical definition of unidirectional single-hop certificateless
proxy re-encryption and its security notion adopted from [10]. A PRE scheme
consists of the following algorithms:

– Setup(1λ): A PPT algorithm run by the Key Generation Center (KGC),
which takes the unary encoding of the security parameter λ as input and
outputs the public parameters params and master secret key msk.

– PartialKeyExtract(msk, IDi, params): A PPT algorithm run by KGC
which takes the master secret key msk, user identity IDi and public parame-
ters params as input, and outputs the partial public key and partial secret
key pair (PPKi, PSKi).

416 S. Sharmila Deva Selvi et al.

– UserKeyGen(IDi, params): A PPT algorithm run by the user, which takes
the identity IDi of the user and the public parameters params as input, and
outputs the user generated secret key and public key pair (USKi, UPKi).

– SetPrivateKey(IDi, PSKi, USKi, params): A PPT algorithm run by the
user, which takes as input the identity IDi of the user, partial secret key
PSKi, user generated secret key USKi and public parameters params, and
outputs the full secret key SKi of the user.

– SetPublicKey(IDi, PPKi, PSKi, UPKi, USKi, params): A PPT algo-
rithm run by the user, which takes as input the the identity IDi of the user,
partial public key PPKi, partial secret key PSKi, user generated public key
UPKi, user generated secret key USKi and public parameters params, and
outputs the full public key PKi of the user.

– Re-KeyGen(IDi, IDj , SKi, PKj , params): A PPT algorithm run by the
user (delegator) with identity IDi which takes as input the identity IDi of
the delegator, identity IDj of the delegatee, the full secret key SKi of IDi,
full public key PKj of IDj and public parameters params, and outputs a
re-encryption key RKi→j or an error symbol ⊥.

– Encrypt(IDi, PKi,m, params): A PPT algorithm run by the sender which
takes as input identity IDi of receiver, full public key PKi of IDi, message
m ∈ M and the public parameters params, and outputs the ciphertext C or
an error symbol ⊥. Note that C is termed as the first level ciphertext.

– Re-Encrypt(IDi, IDj , C,RKi→j , params): A PPT algorithm run by the
proxy which takes the identities IDi, IDj , a first level ciphertext C encrypted
under identity IDi, a re-encryption key RKi→j and public parameters
params as input, and outputs a ciphertext D or an error symbol ⊥. Note
that D is termed as the second-level ciphertext.

– Decrypt(IDi, SKi, C, params): A deterministic algorithm run by the
receiver (delegator) which takes the identity IDi, secret key SKi of iden-
tity IDi, first-level ciphertext C and public parameters params as input, and
outputs the message m ∈ M or an error symbol ⊥.

– Re-Decrypt (IDj , SKj ,D, params): A deterministic algorithm run by the
receiver (delegatee) which takes the identity IDj , secret key SKj of identity
IDj , a second-level ciphertext D and public parameters params as input,
and outputs the message m ∈ M or an error symbol.

The consistency of a CLPRE scheme for any given public parameters params
and full public-private key pairs {(PKi, SKi), (PKj , SKj)} is defined as follows:

1. Consistency between encryption and decryption; i.e.,

Decrypt(IDi, SKi, C, params) = m, ∀m ∈ M,

where C = Encrypt(IDi, PKi,m, params).
2. Consistency between encryption, proxy re-encryption and decryption; i.e.,

Re-Decrypt(IDj , SKj ,D, params) = m, ∀m ∈ M,

where D = Re-Encrypt(IDi, IDj , C,RKi→j , params) and C = Encrypt
(IDi, PKi,m, params).

An Efficient Certificateless Proxy Re-Encryption Scheme Without Pairing 417

2.2 Security Model

Due to the existence of two types of ciphertexts in a PRE scheme namely first
level and second level ciphertexts, it is essential to prove the security for both
levels. Again, there exists two types of adversaries specific to CLPRE: Type-I
adversary and Type-II adversary. The Type I adversary models an attacker who
can replace the public keys of the users by fake keys of its choice because of the
absence of authenticating information for public keys [1]. However, the security
proof demonstrates that the adversary cannot learn anything useful from this
attack as it cannot derive the partial keys and in turn the full private keys
needed for decryption without the cooperation of the KGC (who possesses the
master secret key). The Type-II adversary models the semi-trusted KGC, who
possesses the master secret key and tries to break the security of the system by
eavesdropping or making decryption queries. Note that, the KGC is restrained
from replacing the public keys of the users.

The security of a CLPRE scheme is modelled in the form of a security game
between the two entities: the challenger C and the adversary A. A can adap-
tively query the oracles as listed below which C answers and simulates an envi-
ronment running CLPRE for A. C maintains a list Pcurrent of the public keys
to keep a track of the replaced public keys. Pcurrent consists of tuples of the
form 〈IDi, PKi, ˆPKi〉, where ˆPKi denotes the current value of the public key.
To begin with, ˆPKi is assigned the value of the initial public key ˆPKi = PKi.
A can make queries to the following oracles which are answered by C:

– Public Key Extract(Ope(IDi)): Given an IDi as input, compute the partial
public key and secret key pair: (PPKi, PSKi) = PartialKeyExtract(msk,
IDi, params), the user public key and secret key pair: (USKi, UPKi) = User
KeyGen(IDi, params), the full public key PKi = SetPublicKey(IDi, PPKi,
PSKi, UPKi, USKi, params). Return PKi.

– Partial Key Extract(Oppe(IDi)): Given an IDi as input, compute (PPKi,
PSKi) = PartialKeyExtract(msk, IDi, params) and return (PPKi, PSKi).

– User Key Extract(Oue(IDi)): Given an IDi as input, compute (UPKi,
USKi) = UserKeyGen(IDi, params) and return (USKi, UPKi).

– Re-Key Generation(Ork(IDi, IDj)): Compute RKi→j = Re-KeyGen(IDi,
IDj , SKi, PKj , params) and return RKi→j .

– Re-Encryption(Ore(IDi, IDj , C)): Given a first-level ciphertext C and
two identities IDi, IDj as inputs, compute RKi→j = Re-KeyGen(IDi,
IDj , SKi, PKj , params) and compute the second level ciphertext as D = Re-
Encrypt(IDi, IDj , C,RKi→j , params).

– Decryption(Odec(IDi, C)): Given a first level ciphertext C encrypted under
the public key of IDi as input, compute the decryption of the ciphertext to
obtain m ∈ M. Return m or return ⊥ if the ciphertext is invalid.

– Re-Decryption(Oredec(IDi, C)): Given a second level ciphertext D re-
encrypted under the public key IDj as input, compute the decryption of
the ciphertext to obtain m ∈ M. Return m or return ⊥ if the ciphertext is
invalid.

418 S. Sharmila Deva Selvi et al.

– Public Key Replacement(Orep(IDi, PKi)): Replace the value of the third
component ˆPKi in the PKcurrent list with the new value PKi, provided
PKi is a valid public key.

Security Against Type-I Adversary AI

The Type-I adversary models an outside attacker without access to the master
secret key, trying to learn some information about the underlying plaintext,
given the ciphertext. We consider separate security models for the first level and
second level ciphertexts against AI .
First Level Ciphertext Security: We consider the following security game
where AI interacts with the challenger C in following stages.

• Initialization: C runs Setup(λ) to generate the public parameters params and
master secret key msk. It sends params to AI while keeping msk secret.

• Phase 1: The challenger C sets up the list of corrupt and honest users, ini-
tialises ˆPKi to PKi for all users in the public key list Pcurrent. AI issues
several queries to the above oracles simulated by C, with the restriction that
AI cannot make partial key extract queries (Oppe) or user key extract queries
(Oue) of the users whose public keys have been replaced as it is unreasonable
to expect C to respond to such queries for public keys replaced by AI [1].

• Challenge: A outputs two equal length messages m0 and m1 in M and the
target identity IDch, with the following adversarial constraints:
− IDch should not be a corrupt user.
− AI must not query the partial key extract oracle (Oppe) or user key extract

oracle (Oue) of IDch at any point in time.
− AI must not query Ork(IDch, IDi), where IDi is a corrupt user.
− If AI replaces the public key of IDch, it should not query the partial key

extract oracle (Oppe) for IDch.
On receiving {m0,m1}, C picks δ ∈ {0, 1} at random and generates a challenge
ciphertext C∗ = Encrypt(IDch, ˆPKch,mδ, params) and gives to AI .

• Phase 2: AI issues the queries to the oracles similar to Phase 1, with the same
adversarial constraint as mentioned in Phase 1 and the added constraints on
the target identity IDch as mentioned in the Challenge phase. Additionally,
there are other constraints as below:
− AI cannot query Odec(IDch, C∗), for the same public key of IDch that

was used to initially encrypt mδ.
− AI cannot query the re-decryption oracle Oredec(IDi, C) if (IDi, C) is a

challenge derivative1.
1 The definition of challenge derivative (IDi, C) is adopted from [5] as stated below:

• Reflexitivity: (IDi, C) is a challenge derivative of itself.
• Derivative by re-encryption: (IDj , C

′) is a challenge derivative of (IDi, C) if
C′ ← Ore(IDi, IDj , C).
• Derivative by re-encryption key: (IDj , C

′) is a challenge derivative of (IDi, C) if
RKi→j ← Ork(IDi, IDj) and C′ = Re − Encrypt(IDi, IDj , C,RKi→j , params).

.

An Efficient Certificateless Proxy Re-Encryption Scheme Without Pairing 419

− AI cannot query Ore(IDi, IDj , C), if (IDi, C) is a challenge derivative
and IDj is a corrupt user.

− AI cannot query Ork(IDch, IDj), if IDj is a corrupt user.
• Guess: AI outputs its guess δ′ ∈ {0, 1}.

We define the advantage of AI in winning the game as:

AdvIND−CLPRE−CCA
AI ,first = 2|Pr�δ′ = δ �− 1

2
|

where the probability is over the random coin tosses performed by C and AI .
The scheme is said to be (t, ε)IND − CLPRE − CCA secure for the first level
ciphertext against Type-I adversary AI if for all t-time adversary AI that makes
qpe queries to Ope, qppe queries to Oppe, que queries to Oue, qre queries to Ore,
qrk queries to Ork, qdec queries to Odec, qredec queries to Oredec and qrep queries
to Orep, the advantage of AI is AdvIND−CLPRE−CCA

AI ,first ≤ ε.

Second Level Ciphertext Security: We consider the following security game
for security of the second level ciphertext against Type-I adversary AI , where
AI interacts with the challenger C in following stages.

• Initialization: C runs Setup(λ) to generate the public parameters params and
master secret key msk. It sends params to AI while keeping msk secret.

• Phase 1: The challenger C sets up the list of corrupt and honest users, ini-
tialises ˆPKi to PKi for all users and updates the public key list Pcurrent. AI

issues several queries to the above oracles simulated by C with the restriction
that it cannot make partial key extract queries (Oppe) or user key extract
queries (Oue) of the users whose public keys have already been replaced.

• Challenge: AI outputs two messages m0, m1 in M where |m0| = |m1|, the
target identity IDch, and the delegator’s identity IDdel with the adversarial
constraints as follows:
− IDch should not be a corrupt user.
− AI must not query the partial key extract oracle (Oppe) or user key extract

oracle (Oue) of IDch at any point in time.
− If AI replaces the public key of IDch, it should not query the partial key

extract oracle (Oppe) for IDch.
− AI must not query Ork(IDdel, IDch).
− AI must not query Ork(IDch, IDi), where IDi is a corrupt user.
On receiving {m0,m1}, C picks δ ∈ {0, 1} at random and generates a challenge
ciphertext D∗ = Re − Encrypt(IDdel, IDch, Encrypt(IDch, ˆPKch,mδ,
params), RKIDdel→IDch

, params) and gives to AI .
• Phase 2: AI issues the queries to the oracles similar to Phase 1, with the same

adversarial constraint as mentioned in Phase 1 and constraints on the target
identity IDch mentioned in the Challenge phase. Additionally, AI cannot
query Oredec(IDch, C∗), for the same public key of IDch that was used to
initially encrypt mδ.

• Guess: AI outputs its guess δ′ ∈ {0, 1}.

420 S. Sharmila Deva Selvi et al.

We define the advantage of AI in winning the game as:

AdvIND−CLPRE−CCA
AI ,second = 2|Pr�δ′ = δ�−1

2
|

where the probability is over the random coin tosses performed by C and AI .
The scheme is said to be (t, ε)IND−CLPRE −CCA secure for the second level
ciphertext against Type-I adversary AI if for all t-time adversary AI that makes
qpe queries to Ope, qppe queries to Oppe, que queries to Oue, qre queries to Ore,
qrk queries to Ork, qdec queries to Odec, qredec queries to Oredec and qrep queries
to Orep, the advantage of AI is AdvIND−CLPRE−CCA

AI ,second ≤ ε.

Security Against Type-II Adversary AII

The Type-II adversary models an honest-but-curious KGC who has access to
the master secret key msk, but is not allowed to replace the public keys of users.
We consider separate security models for the first and second level ciphertexts.

First Level Ciphertext Security: We consider the following security game
where AII interacts with the challenger C as follows.

• Initialization: C runs Setup(λ) to generate the public parameters params and
master secret key msk. It sends both params and msk to AII .

• Phase 1: The challenger C maintains the list of honest and corrupt users and
initialises ˆPKi to PKi for all the users in the public key list Pcurrent. AII

issues several queries to the above stated oracles simulated by C with the
restriction that it cannot make partial key extract queries (Oppe) or user key
extract queries (Oue) of the users whose public keys have been replaced.

• Challenge: AII outputs two equal length messages {m0,m1} in M and the
target identity IDch, with the adversarial constraints as follows:
− IDch should not be a corrupt user.
− AII must not replace the public key of IDch.
− AII must have not queried Ork(IDch, IDi), where IDi is a corrupt user.
On receiving {m0,m1}, C selects δ ∈ {0, 1} at random, generates a challenge
ciphertext C∗ = Encrypt(IDch, ˆPKch,mδ, params) and gives C∗ to AII .

• Phase 2: AII issues the queries to the oracles similar to Phase 1, with the
same adversarial constraints as mentioned in Phase 1 and the constraints on
the target identity IDch as mentioned in the Challenge phase. Additionally,
there are other constraints as below:
− AII cannot query Odec(IDch, C∗), for the same public key of IDch that

was used to initially encrypt mδ.
− AII cannot query the re-decryption oracle Oredec(ID,C) if (ID,C) is a

challenge derivative.
− AII cannot query Ore(IDi, IDj , C), if (IDi, C) is a challenge derivative

and IDj is a corrupt user.
− AII cannot query Ork(IDch, IDj), if IDj is a corrupt user.

• Guess: AII outputs its guess δ′ ∈ {0, 1}.

An Efficient Certificateless Proxy Re-Encryption Scheme Without Pairing 421

We define the advantage of AII in winning the game as:

AdvIND−CLPRE−CCA
AII ,first = 2|Pr�δ′ = δ�−1

2
|

where the probability is over the random coin tosses performed by C and AII .
The scheme is said to be (t, ε)IND − CLPRE − CCA secure for the first level
ciphertext against Type-II adversary AII if for all t-time adversary AII that
makes qpe queries to Ope, qppe queries to Oppe, que queries to Oue, qre queries to
Ore, qrk queries to Ork, qdec queries to Odec, qredec queries to Oredec and qrep

queries to Orep, the advantage of AII is AdvIND−CLPRE−CCA
AII ,first ≤ ε.

Second Level Ciphertext Security: We consider the following security game
where AII interacts with the challenger C in the following stages.

• Initialization: C runs Setup(λ) to generate the public parameters params and
master secret key msk. It sends both params and msk to AII .

• Phase 1: The challenger C sets up the list of corrupt and honest users, ini-
tialises ˆPKi to PKi for all the users and updates the public key list Pcurrent.
AII issues several queries to the above stated oracles simulated by C with
the restriction that it cannot make partial key extract queries (Oppe) or user
key extract queries (Oue) of the users whose public keys have been replaced.
Also, AII cannot place queries to Oppe as it already has access to msk and
can generate the partial keys itself.

• Challenge: AII outputs two messages m0 and m1 in M where |m0| = |m1|, the
target identity IDch, and the delegator’s identity IDdel with the adversarial
constraints as follows:
− IDch should not be a corrupt user.
− AII must not query the user key extract oracle (Oue) of IDch.
− AII must not replace the public key of IDch.
− AII must not query Ork(IDdel, IDch).
− AII must have not queried Ork(IDch, IDi), where IDi is a corrupt user.
On receiving {m0,m1}, C picks δ ∈ {0, 1} at random and generates a challenge
ciphertext D∗ = Re − Encrypt(IDdel, IDch, Encrypt(IDch, ˆPKch,mδ,
params), RKIDdel→IDch

, params) and gives to AII .
• Phase 2: AII issues the queries to the oracles similar to Phase 1, with the same

adversarial constraint as mentioned in Phase 1 and the added constraint on
the target identity IDch as mentioned in the Challenge phase. Additionally,
AII cannot query Oredec(IDch, C∗), for the same public key of IDch that was
used to initially encrypt mδ.

• Guess: AII outputs its guess δ′ ∈ {0, 1}.

We define the advantage of AII in winning the game as:

AdvIND−CLPRE−CCA
AII ,second = 2|Pr�δ′ = δ�−1

2
|

where the probability is over the random coin tosses performed by C and AII .
The scheme is said to be (t, ε)IND−CLPRE −CCA secure for the second level

422 S. Sharmila Deva Selvi et al.

ciphertext against Type-II adversary AII if for all t-time adversary AII that
makes qpe queries to Ope, qppe queries to Oppe, que queries to Oue, qre queries to
Ore, qrk queries to Ork, qdec queries to Odec, qredec queries to Oredec and qrep

queries to Orep, the advantage of AII is AdvIND−CLPRE−CCA
AII ,second ≤ ε.

Hardness Assumption

We state the computational hardness assumption we use to prove the security
of our scheme. Let G be a cyclic group with a prime order q.

Definition 1. Computational Diffie-Hellman (CDH) assumption: The
Computational Diffie-Hellman (CDH) assumption in G is, given elements
{P, aP, bP} ∈ G, there exists no PPT adversary which can compute abP ∈ G

with a non-negligible advantage, where P is a generator of G and a, b ∈R Z
∗
q .

3 Analysis of a Certificateless PRE Scheme by Srinivasan
et al. [10]

3.1 Review of the Scheme

• Setup(1λ):
− Choose two large primes p and q such that q|p − 1 and the security para-

meter λ defines the bit length of q. Let G be a subgroup of Z∗
p of order q

and g is a generator of G. Pick x ∈R Z
∗
q and compute y = gx.

− Choose the following cryptographic hash functions:

H : G → Z
∗
q ,

H1 : {0, 1}∗ × G → Z
∗
q ,

H2 : {0, 1}∗ × G
3 → Z

∗
q ,

H3 : G → {0, 1}l0+l1 ,

H4 : {0, 1}l0 × {0, 1}l1 → Z
∗
q ,

H5 : G2 × {0, 1}l0+l1 → Z
∗
q ,

H6 : {0, 1}∗ × G
2 → Z

∗
q

Here l0 = log q and l1 is determined by the security parameter λ. The
message space M is set to {0, 1}l0 .

− Return the public parameters params = (p, q,G, g, y,H,H1,H2,H3,H4,
H5,H6). The master secret key is msk = x.

• PartialKeyExtract(msk, IDi, params):
− Pick s1, s2, s3 ∈R Z

∗
q and compute Q1 = gs1 , Q2 = gs2 , Q3 = gs3 .

− Compute S1 = s1 + xH1(IDi, Q1), S2 = s2 + xH1(IDi, Q2) and S3 =
s3 + xH2(IDi, Q1, Q2, Q3).

− Return the partial public key PPK = (Q1, Q2, Q3, S3) and the partial
secret key PSK = (S1, S2).

An Efficient Certificateless Proxy Re-Encryption Scheme Without Pairing 423

• UserKeyGen(IDi, params):
− Pick z1, z2 ∈R Z

∗
q and compute (gz1 , gz2).

− Return USK = (U1, U2) = (z1, z2) and UPK = (P1, P2) = (gz1 , gz2).
• SetPublicKey(IDi, PPK,PSK,UPK,USK, params):

− Pick t1, t2 ∈R Z
∗
q . Compute T1 = gt1 and T2 = gt2 .

− Compute μ1 = t1 + S1H6(IDi, P1, T1) and μ2 = t2 + S2H6(IDi, P2, T2).
− Return the full public key PK = (P1, P2, Q1, Q2, Q3, S3, T1, T2, μ1, μ2).

• Public Verify(IDi, PK, params):
− Compute R1 = Q1 · yH1(IDi,Q1) and R2 = Q2 · yH1(IDi,Q2).
− Check if gμ1

?= (T1)(R1)H6(IDi,P1,T1), gμ2
?= (T2)(R2)H6(IDi,P2,T2), gS3

?=
(Q3)(yH2(IDi,Q1,Q2,Q3)).

− If all the above checks are satisfied, return success, else return failure.
• SetPrivateKey(IDi, PSK,USK, params):

− Output the full secret key of the identity IDi as SK = (U1, U2, S1, S2).
• Re-KeyGen(IDi, IDj , SKi, PKj , params):

− Check the validity of the public key of IDj by verifying if Public
V erify(IDj , PKj , params) = success. If the check fails, return ⊥.

− Compute Rj,1 = Qj,1(yH1(IDj ,Qj,1)), X1 = Pj,1(R
H(Pj,1)
j,1).

− Compute X = Pj,1(Pj,2)H(Pj,1) and α = H(X).
− Select h ∈R {0, 1}l0 and π ∈R {0, 1}l1 . Compute v = H4(h, π).
− Compute V = (X1)v, W = H3(gv) ⊕ (h||π).
− Compute rk = h

Ui,1+H(Pi,1)Ui,2+α(Si,1+H(Ri,1)Si,2)
.

− Output the re-encryption key RKi→j = (rk, V,W).
• Encrypt(IDi, PKi,m, params):

− Check the validity of the public key PKi by verifying if Public
V erify(IDi, PKi, params) = success. If the check fails, output ⊥.

− Compute Ri,1 = Qi,1(yH1(IDi,Qi,1)), Ri,2 = Qi,2(yH1(IDi,Qi,2)), X =
Pi,1(Pi,2)H(Pi,1), Y = Ri,1(Ri,2)H(Ri,1), α = H(X) and set Z = (X(Y)α).

− Select u ∈R Z
∗
q and ω ∈R {0, 1}l1 . Compute r = H4(m,ω).

− Compute D = (Z)u, E = Zr, F = H3(gr)⊕(m||ω), s = u + rH5(D,E, F).
− Return the ciphertext C = (D,E, F, s) as the first level ciphertext.

• Re-Encrypt(IDi, IDj , C,RKi→j , params):
− Check validity of the ciphertext by computing Z as shown in

Encrypt(IDi, PKi,m, params) and performing the following checks.

(Z)s ?= D · EH5(D,E,F) (1)

If the check fails, return ⊥.
− Else, compute E′ = Rrk.
− Output D = (E′, F, V,W) as the second level ciphertext.

• Decrypt(IDi, SKi, C, params):
− Obtain the public key PKi corresponding to IDi. Check validity of the

ciphertext by checking if Eq. 1 holds. If the check fails, output ⊥.
− Else, compute Ri,1 = Qi,1(yH1(IDi,Qi,1)), Ri,2 = Qi,2(yH1(IDi,Qi,2)), X =

Pi,1(Pi,2)H(Pi,1), Y = Ri,1(Ri,2)H(Ri,1), α = H(X) and set Z = (X(Y)α).
Set K = Ui,1 + H(Pi,1)Ui,2 + α(Si,1 + H(Ri,1)Si,2).

424 S. Sharmila Deva Selvi et al.

− Compute (m||ω) = F ⊕H3(E
1
K). Output m if E

?= (Z)H4(m,ω) holds. Else,
return ⊥.

• Re-Decrypt(IDj , SKj ,D, params):
− Compute Rj,1 = Qj,1(yH1(IDj ,Qj,1)), X1 = Pj,1(R

H(Pj,1)
j,1).

− Compute (h||π) = W ⊕H3(V
1

Uj,1+H(Pj,1)Sj,1) and (m||ω) = F ⊕H3(E′1/h).
− Output m if V

?= (X)H4(h,π)
1 , E′ ?= gh(H4(m,ω)). Else, return ⊥.

3.2 Our Attack

In this section, we highlight the flaw in the security reduction of the CLPRE
scheme due to Srinivasan et al. [10]. We demonstrate that the simulation of the
random oracles does not comply with the real system due to which, the adversary
can distinguish the simulation of the challenger from the real system. Note that
the flaw is observed in the proof for both Type − I and Type − II adversary
and we refer to both the two types of adversaries as A in general. Consider that
the adversary constructs a first level dummy ciphertext Cd = (D,E, F, s) in
the following way under a public key PKi. We use Encryptfake to denote this
technique to construct dummy ciphertexts.

– Compute Z using Encrypt(IDi, PKi,m, params) algorithm.
– Select u ∈R Z

∗
q and compute D = (Z)u.

– Pick r ∈R Z
∗
q and compute E = (Z)r.

– Choose F ∈R {0, 1}l0+l1 .
– Compute s = u + rH5(D,E, F) mod q.

Note that the computation of F and r in Cd using Encryptfake vio-
lates the definition of the Encrypt(IDi, PKi,m, params) algorithm. But Cd

clears the ciphertext validity check of Eq. (1). The decryption algorithm
Decrypt(IDi, SKi, Cd, params) detects the ciphertext Cd as invalid and returns
⊥. However, the ReEncrypt(IDi, IDj , Cd, RKi→j , params) algorithm accepts
Cd as a valid ciphertext. We use this knowledge to construct a distinguisher for
the simulated environment from the real system described stepwise as follows:

1. After the Challenge phase, A generates a dummy ciphertext C1 =
(D1, E1, F1, s) under the target identity PKch using Encryptfake as shown:

– Compute Zch using Encrypt(IDi, PKi,m, params) algorithm.
– Select u1 ∈R Z

∗
q and compute D1 = (Zch)u1 .

– Pick r1 ∈R Z
∗
q and compute E1 = (Zch)r1 .

– Choose F1 ∈R {0, 1}l0+l1 .
– Compute s1 = u1 + r1H5(D1, E1, F1) mod q.

2. A generates another dummy ciphertext C2 = (D2, E2, F2, s2) in the same way
described above considering random values r2 ∈R Z

∗
q and F2 ∈R {0, 1}l0+l1 .

3. A queries the re-encryption oracle Orenc(IDch, IDj , C1, RKch→j). As per
Orenc, C searches the H4 list for a tuple of the form (〈m,ω〉, r) such
that E1 = (Zr

ch). If no such tuple exists, Orenc outputs ⊥. Note
that, on an output ⊥, A can distinguish between the simulation and

An Efficient Certificateless Proxy Re-Encryption Scheme Without Pairing 425

the real system, since C1 is a valid ciphertext as per the definition of
ReEncrypt(IDch, IDj , C,RKch→j , params) algorithm and should produce a
valid second level ciphertext D1.

– If Orenc returns ⊥, A aborts.
– Else, Orenc computes D1 = (E′

1, F1, V1,W1) and outputs D1.
4. Similarly, A queries the re-encryption oracle Orenc(IDch, IDj , C2, RKch→j).

As per Orenc, C searches the H4 list for a tuple of the form (〈m,ω〉, r)
such that E2 = (Zr

ch). If no such tuple exists, Orenc outputs ⊥. Note
that, on an output ⊥, A can distinguish between the simulation and
the real system, since C1 is a valid ciphertext as per the definition of
ReEncrypt(IDch, IDj , C,RKch→j , params) and should produce a valid sec-
ond level ciphertext D2.

– If Orenc returns ⊥, A aborts.
– Else, Orenc computes D2 = (E′

2, F2, V2,W2) and outputs D2.

5. On receiving D1 and D2, A computes T1 = E′
1
r1
1 and T2 = E′

1
r2
2 .

6. If T1
?= T2 does not hold, ReEncrypt(IDch, IDj , C,RKch→j , params) �=

Orenc, A learns it is not the real system and aborts. Else, if T1
?= T2 holds,

A cannot distinguish between the simulated environment and real system.

3.3 A Possible Fix

The flaw in the scheme can be fixed by modifying the encryption algorithm
Encrypt(IDi, PKi,m, params) with additional ciphertext validity checks in
both Re-Encrypt and the Decrypt. The modified scheme is shown below.

• Setup(1λ): The Setup algorithm remains the same as in [10] described in
Sect. 3.1. Add another cryptographic hash function to the existing public
parameters as defined:

H̃ : G4 × {0, 1}l0+l1 → G

Return public parameters params = (p, q,G, g, y, H̃,H,H1,H2,H3,H4,H5,
H6) and the master secret key is msk = x, generated as described in Sect. 3.1.

• The PartialKeyExtract, UserKeyGen, SetPublicKey, Public Ver-
ify, SetPrivateKey, Re-KeyGen algorithms are the same as described
in Sect. 3.1.

• Encrypt(IDi, PKi,m, params):
− Check the validity of the public key PKi by verifying if Public Ver-

ify(IDi, PKi) = success. If the check fails, output ⊥.
− Compute Ri,1 = Qi,1(yH1(IDi,Qi,1)), Ri,2 = Qi,2(yH1(IDi,Qi,2)), X =

Pi,1(Pi,2)H(Pi,1), Y = Ri,1(Ri,2)H(Ri,1), α = H(X) and set Z = (X(Y)α).
− Select u ∈R Z

∗
q and ω ∈R {0, 1}l1 . Compute r = H4(m,ω).

− Compute D = (Z)u, E = Zr.
− Compute D̄ = H̃(X,Y,D,E, F)u, Ē = H̃(X,Y,D,E, F)r.
− Compute F = H3(gr) ⊕ (m||ω) and s = u + rH5(E, Ē, F).
− Return the ciphertext C = (E, Ē, F, s) as the first level ciphertext.

426 S. Sharmila Deva Selvi et al.

• Re-Encrypt(IDi, IDj , C,RKi→j , params): On input of a re-encryption key
RKi→j = (RK

〈1〉
i→j , V,W), a first level ciphertext C = (E, Ē, F, s) encrypted

under PKi, obtain a second level ciphertext D under PKj as follows:
− Compute Ri,1 = Qi,1(yH1(IDi,Qi,1)), Ri,2 = Qi,2(yH1(IDi,Qi,2)), X =

Pi,1(Pi,2)H(Pi,1), Y = Ri,1(Ri,2)H(Ri,1), α = H(X) and set Z = (X(Y)α).
− Compute D and D̄ as follows:

D = (Z)s · (EH5(E,Ē,F))−1

= Zu · Zr·H5(E,Ē,F) · Z−r·H5(E,Ē,F)

= (Z)u.

D̄ = H̃(X,Y,D,E, F)s · (ĒH5(E,Ē,F))−1

= H̃(X,Y,D,E, F)u+r·H5(E,Ē,F) · H̃(X,Y,D,E, F)−r·H5(E,Ē,F)

= H̃(X,Y,D,E, F)u.

− Check the validity of the ciphertext by performing the following checks.

(Z)s ?= D · EH5(E,Ē,F) (2)

H̃(X,Y,D,E, F)s ?= D̄ · ĒH5(E,Ē,F) (3)

If the check fails, return ⊥.
− Else, parse RKi→j as (rk, V,W) compute E′ = Rrk.
− Output D = (E′, F, V,W) as the second level ciphertext.

• Decrypt(IDi, SKi, C, params):
− Obtain the public key PKi corresponding to IDi. Check if the ciphertext

is well-formed by computing the values of D and D̄ and checking if Eqs. 2
and 3 holds. If they do not hold, return ⊥.

− Else, compute Ri,1, Ri,2,X, Y, α, Z,K and retrieve m as described in the
Decrypt(IDi, SKi, C, params) algorithm in Sect. 3.1.

• Re-Decrypt(IDj , SKj ,D, params): Same as described in in Sect. 3.1.

4 Our Unidirectional CCA-secure CLPRE Scheme

4.1 Our Scheme

• Setup(1λ): Given λ as the security parameter, choose a group G of prime
order q. Let P be a generator of G. Pick s ∈R Z

∗
q and compute Ppub = sP .

Choose cryptographic hash functions:

H̃ : {0, 1}lID × G
2 × {0, 1}l0+l1 → G

H1 : {0, 1}lID × G
2 → Z

∗
q

H2 : Z∗
q × Z

∗
q → Z

∗
q

H3 : G → Z
∗
q

H4 : {0, 1}l0 × {0, 1}l1 → Z
∗
q

H5 : G2 → {0, 1}l0+l1

H6 : G2 × {0, 1}l0+l1 → Z
∗
q

An Efficient Certificateless Proxy Re-Encryption Scheme Without Pairing 427

where {0, 1}l0 is the size of the message space M, l1 is determined by the secu-
rity parameter λ and {0, 1}lID is the size of the identity of a user. Return the
public parameters params = (G, q, P, Ppub, H̃,H1,H2,H3,H4,H5,H6) and
master secret key msk = s.

• PartialKeyExtract(msk, IDi, params):
− Choose xi, yi ∈R Z

∗
q .

− Compute Xi = xiP, Yi = yiP .
− Compute qi = H1(IDi,Xi, Yi).
− Compute di = (xi + qis) mod q.
− Return the Partial Public Key PPKi = (Xi, Yi, di) and the Partial Private

Key PSKi = yi.
• UserKeyGen(IDi, params):

− Pick zi ∈R Z
∗
q .

− Compute Zi = ziP .
− Return the user private key-public key pair (USKi, UPKi) = (zi, Zi).

• SetPrivateKey(IDi, PSKi, USKi, params): Set the full secret key as
SKi = 〈zi, yi〉.

• SetPublicKey(IDi, PPKi, PSKi, UPKi, USKi, params): Set the full pub-
lic key as PKi = 〈Xi, Yi, Zi, di〉.

• PublicVerify(IDi, PKi, params): We additionally provide public verifiabil-
ity of the public keys of each user. This is done by the following check:

diP
?= Xi + H1(IDi,Xi, Yi) · Ppub (4)

If the check is satisfied, return valid, else return invalid.

Remark 1. Our public key verification algorithm PublicV erify(IDi, PKi,
params) ensures the validity of the public keys, since an adversary can replace the
public keys with false keys of its choice.

• Re-KeyGen(IDi, IDj , SKi, PKj , params):
− Pick α

(1)
ij , β

(1)
ij ∈R Z

∗
q .

− Compute α
(2)
ij such that α

(1)
ij · α

(2)
ij = yi mod q.

− Compute β
(2)
ij such that β

(1)
ij · β

(2)
ij = zi mod q.

− Compute vij = H2(α
(2)
ij ||β(2)

ij).

− Compute Vij = vij · Yj and Wij = H3(vijP) ⊕ (α(2)
ij ||β(2)

ij).

− Return RKi→j = (α(1)
ij , β

(1)
ij , Vij ,Wij).

• Encrypt(IDi, PKi,m, params):
− Check the validity of the public key of identity IDi by checking if

PublicVerify(IDi, PKi, params)=valid.
− If invalid, return ⊥.
− Else, pick σ ∈R {0, 1}l1 , u ∈R Z

∗
q .

− Compute r = H4(m,σ) ∈ Z
∗
q .

− Compute the ciphertext C = (C1, C2, C3, C4) where:
Compute C1 = rP ∈ G.

428 S. Sharmila Deva Selvi et al.

Compute C1 = uP ∈ G.
Compute C2 = rH̃(IDi, C1, C1, C3) ∈ G.
Compute C2 = uH̃(IDi, C1, C1, C3) ∈ G.
Compute C3 = H5(rYi, rZi) ⊕ (m||σ) ∈ {0, 1}l0+l1 .
Compute C4 = u + rH6(C1, C2, C3) ∈ Z

∗
q .

− Return C = (C1, C2, C3, C4).
• Re-Encrypt(IDi, IDj , C,RKi→j , params): To verify that C is well-formed,

compute C1 and C2 as given:

C1 = C4P − H6(C1, C2, C3) · C1

= uP + H6(C1, C2, C3)rP − H6(C1, C2, C3) · C1

= uP.

C2 = C4 · H̃(IDi, C1, C1, C3) − H6(C1, C2, C3) · C2

= (u + rH6(C1, C2, C3))H̃(IDi, C1, C1, C3) − H6(C1, C2, C3) · C2

= uH̃(IDi, C1, C1, C3).

We verify if the ciphertext is well-formed by performing the following checks:

C4 · P
?= C1 + H6(C1, C2, C3) · C1 (5)

C4 · H̃(IDi, C1, C1, C3)
?= C2 + H6(C1, C2, C3) · C2 (6)

If verification is successful, do the following computation:
− Compute D1 = α

(1)
ij · C1.

− Compute D2 = β
(1)
ij · C1.

− Return the re-encrypted ciphertext as D = (D1,D2,D3,D4,D5) = (D1,
D2, C3, Vij ,Wij).

• Decrypt(IDi, SKi, C, params): Verify that C is a valid ciphertext by check-
ing if Eqs. 5 and 6 holds. If satisfied, compute m using:

(m||σ) = C3 ⊕ H5(yi · C1, zi · C1) (7)

• Re-Decrypt(IDj , SKj ,D, params):
− Compute (α(2)

ij ||β(2)
ij) = Wij ⊕ H3(1

yj
Vij).

− Check if Vij
?= H2(α

(2)
ij ||β(2)

ij) · Yj .
− If satisfied, compute m as:

(m||σ) = C3 ⊕ H5

(
α
(2)
ij · D1, β

(2)
ij · D2

)
(8)

An Efficient Certificateless Proxy Re-Encryption Scheme Without Pairing 429

4.2 Correctness

Due to space constraints, the correctness of our scheme appears in the full version
of the paper [8].

4.3 Security Proof

First-level Ciphertext Security Against Type I Adversary

Theorem 1. Our proposed scheme is CCA-secure against Type-I adversary for
the first level ciphertext under the CDH assumption and the EUF −CMA secu-
rity of Schnorr signature scheme [7]. If a (t, ε)IND − CLPRE − CCA Type-I
adversary AI with an advantage ε breaks the IND-CLPRE-CCA security of the
given scheme, C can solve the CDH problem with advantage ε′ within time t′

where:

ε′ ≥ 1
qH5

(
(1 − ω)1+qrkε

e(qppe + 1)
− qH4

2l0+l1
− qH6

2l0+l1
− qH̃

2l0+l1

− qdec

(
qH5/q

1 − (qH4/(2l0+l1))
+

qH4/(2l0+l1)
1 − (qH5/q)

+
2
q

))

where ω is the advantage of an attacker against the EUF-CMA security game of
the Schnorr signature scheme and e is the base of the natural logarithm. Time
taken by C to solve the CDH problem is:

t′ ≤ t + (Tq)O(1) + (TO)texp

where Tq = qH̃ + qH1 + qH2 + qH3 + qH4 + qH5 + qH6 , TO = 4tpe + 4tppe +
4tue + 2trk + 8tre + 8tdec + 6tredec. We denote the time taken for exponentiation
operation in group G as texp.

Proof. Due to space constraints, the proof of the theorem is given in the full
version of this paper [8].

Second-level Ciphertext Security Against Type I Adversary

Theorem 2. Our proposed scheme is CCA-secure against Type-I adversary for
the second level ciphertext under the CDH assumption and the EUF − CMA
security of the Schnorr signature scheme. If a (t, ε)IND − CLPRE − CCA
Type-I adversary AI with an advantage ε breaks the IND-CLPRE-CCA security
of the given scheme, C can solve the CDH problem with advantage ε′ within time
t′ where:

ε′ ≥ 1
qH5

(
2(1 − ω)2+qrkε

e(qppe + 2)2
− qdec

(
qH5/q

1 − (qH4/(2l0+l1))
+

qH4/(2l0+l1)
1 − (qH5/q)

+
2
q

))

430 S. Sharmila Deva Selvi et al.

where ω is the advantage of an attacker against the EUF-CMA security game of
the Schnorr signature scheme and e is the base of the natural logarithm. Time
taken by C to solve the CDH problem is:

t′ ≤ t + (Tq)O(1) + (TO)texp

where Tq = qH̃ + qH1 + qH2 + qH3 + qH4 + qH5 + qH6 , TO = 4tpe + 4tppe +
4tue + 2trk + 8tre + 8tdec + 6tredec. We denote the time taken for exponentiation
operation in group G as texp.

Proof. Due to space constraints, the proof of the theorem is given in the full
version of this paper [8].

First-level Ciphertext Security Against Type II Adversary

Theorem 3. Our proposed scheme is CCA-secure against Type-II adversary
for the first level ciphertext under the CDH assumption and the EUF − CMA
security of the Schnorr signature scheme. If a (t, ε)IND−CLPRE−CCA Type-
II adversary AII with an advantage ε breaks the IND-CLPRE-CCA security of
the given scheme, C can solve the CDH problem with advantage ε′ within time t′

where:

ε′ ≥ 1
qH2

(
(1 − ω)1+qrkε

e(qppe + que + 1)
− qH4

2l0+l1
− qH6

2l0+l1
− qH̃

2l0+l1

− qdec

(
qH5/q

1 − (qH4/(2l0+l1))
+

qH4/(2l0+l1)
1 − (qH5/q)

+
2
q

))

where ω is the advantage of an attacker against the EUF-CMA security game of
the Schnorr signature scheme and e is the base of the natural logarithm. Time
taken by C to solve the CDH problem is:

t′ ≤ t + (Tq)O(1) + (TO)texp

where Tq = qH̃ + qH1 + qH2 + qH3 + qH4 + qH5 + qH6 , TO = 4tpe + 4tppe +
4tue + 2trk + 8tre + 8tdec + 6tredec. We denote the time taken for exponentiation
operation in group G as texp.

Proof. Due to space constraints, the proof of the theorem is given in the full
version of this paper [8].

Second-level Ciphertext Security Against Type II Adversary

Theorem 4. Our proposed scheme is CCA-secure against Type-II adversary for
the second level ciphertext under the CDH assumption and the EUF − CMA
security of the Schnorr signature scheme. If a (t, ε)IND − CLPRE − CCA
Type-II adversary AII with an advantage ε breaks the IND-CLPRE-CCA security

An Efficient Certificateless Proxy Re-Encryption Scheme Without Pairing 431

of the given scheme, C can solve the CDH problem with advantage ε′ within time
t′ where:

Pr[EH∗
5
] ≥ 2(1 − ω)2+qrk

e(qppe + que + 2)2
− qdec

(
qH5/q

1 − (qH4/(2l0+l1))
+

qH4/(2l0+l1)
1 − (qH5/q)

+
2
q

)

where ω is the advantage of an attacker against the EUF-CMA security game of
the Schnorr signature scheme and e is the base of the natural logarithm. Time
taken by C to solve the CDH problem is:

t′ ≤ t + (Tq)O(1) + (TO)texp

where Tq = qH̃ + qH1 + qH2 + qH3 + qH4 + qH5 + qH6 , TO = 4tpe + 4tppe +
4tue + 2trk + 8tre + 8tdec + 6tredec. We denote the time taken for exponentiation
operation in group G as texp.

Proof. Due to space constraints, the proof of the theorem is given in the full
version of this paper [8].

5 Efficiency Comparison

We give a comparison of the efficiency of our proposed CLPRE scheme with the
suggested fix to [10] as described in Sect. 3.3. In Table 1, we show the computa-
tional efficiency of our scheme and the modified scheme by comparing the time
taken by the different algorithms in our protocols. Note that we use texp to denote
the time required for exponentiation in a group. The comparison reveals that our
scheme is more efficient than the existing scheme with our suggested fix.

Table 1. Efficiency comparison of the scheme [10] with the suggested fix with our
CLPRE scheme indicates that our scheme is more efficient.

Scheme Modified CLPRE scheme of Srinivasan et al. [10] Our CLPRE
scheme

Setup texp texp

PartialKeyExtract 3texp 2texp

UserKeyGen 2texp texp

SetPublicKey 2texp −
PublicVerify 8texp 2texp

Re-KeyGen 5texp 2texp

Encrypt 10texp 4texp

Re-Encrypt 10texp 6texp

Decrypt 11texp 6texp

Re-Decrypt 6texp 4texp

432 S. Sharmila Deva Selvi et al.

6 Conclusion

Although several CLPRE schemes have been proposed in the literature, to the
best of our knowledge, only one scheme [6] has reported the certificateless prop-
erty without any known attacks to the scheme. The scheme is based on costly
bilinear pairing operation and satisfies a weaker notion of security, termed as
RCCA security. Recently, Srinivasan et al. [10] proposed a CLPRE scheme with-
out resorting to bilinear pairing in the random oracle model. However, we demon-
strated that their security proof is flawed by presenting a concrete attack. We
then presented a unidirectional CLPRE scheme which is pairing-free and satis-
fies CCA-security against both the Type-I and Type-II adversaries for the first
and second level ciphertexts. We remark that a potential fix to [10] is also sug-
gested in our paper but our proposed algorithm is more efficient as noted from
our efficiency comparison. Our work affirmatively resolves the problems faced
by PKI-based and IB-based PRE schemes by proposing an efficient pairing-free
certificateless Proxy Re-encryption scheme.

References

1. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003). doi:10.1007/978-3-540-40061-5 29

2. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. In: IN NDSS (2005)

3. Ateniese, G., Kevin, F., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Tran. Inf. Syst.
Secur. (TISSEC) 9(1), 1–30 (2006)

4. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). doi:10.1007/BFb0054122

5. Chow, S.S.M., Weng, J., Yang, Y., Deng, R.H.: Efficient unidirectional proxy re-
encryption. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol.
6055, pp. 316–332. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12678-9 19

6. Guo, H., Zhang, Z., Zhang, J., Chen, C.: Towards a secure certificateless
proxy re-encryption scheme. In: Susilo, W., Reyhanitabar, R. (eds.) ProvSec
2013. LNCS, vol. 8209, pp. 330–346. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41227-1 19

7. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol. 4(3),
161–174 (1991)

8. Sharmila Deva Selvi, S., Paul, A., Pandu Rangan, C.: An efficient certificateless
proxy re-encryption scheme without pairing. Cryptology ePrint Archive, Report
2017/768 (2017). http://eprint.iacr.org/2017/768

9. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). doi:10.1007/3-540-39568-7 5

10. Srinivasan, A., Pandu Rangan, C.: Certificateless proxy re-encryption without pair-
ing: revisited. In: Proceedings of the 3rd International Workshop on Security in
Cloud Computing, SCC@ASIACCS 2015, Singapore, Republic of Singapore, 14
April 2015, pp. 41–52 (2015)

http://dx.doi.org/10.1007/978-3-540-40061-5_29
http://dx.doi.org/10.1007/BFb0054122
http://dx.doi.org/10.1007/978-3-642-12678-9_19
http://dx.doi.org/10.1007/978-3-642-41227-1_19
http://dx.doi.org/10.1007/978-3-642-41227-1_19
http://eprint.iacr.org/2017/768
http://dx.doi.org/10.1007/3-540-39568-7_5

An Efficient Certificateless Proxy Re-Encryption Scheme Without Pairing 433

11. Sur, C., Jung, C.D., Park, Y., Rhee, K.H.: Chosen-ciphertext secure certificate-
less proxy re-encryption. In: De Decker, B., Schaumüller-Bichl, I. (eds.) CMS
2010. LNCS, vol. 6109, pp. 214–232. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13241-4 20

12. Yang, K., Xu, J., Zhang, Z.: Certificateless proxy re-encryption without pairings.
In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 67–88. Springer,
Cham (2014). doi:10.1007/978-3-319-12160-4 5

13. Zheng, Y., Tang, S., Guan, C., Chen, M.-R.: Cryptanalysis of a certificateless
proxy re-encryption scheme. In: 2013 Fourth International Conference on Emerging
Intelligent Data and Web Technologies, Xi’an, Shaanxi, China, 9–11 September
2013, pp. 307–312 (2013)

http://dx.doi.org/10.1007/978-3-642-13241-4_20
http://dx.doi.org/10.1007/978-3-642-13241-4_20
http://dx.doi.org/10.1007/978-3-319-12160-4_5

	An Efficient Certificateless Proxy Re-Encryption Scheme Without Pairing
	1 Introduction
	1.1 Related Work and Contribution

	2 Definition and Security Model
	2.1 Definition
	2.2 Security Model

	3 Analysis of a Certificateless PRE Scheme by Srinivasan et al.
	3.1 Review of the Scheme
	3.2 Our Attack
	3.3 A Possible Fix

	4 Our Unidirectional CCA-secure CLPRE Scheme
	4.1 Our Scheme
	4.2 Correctness
	4.3 Security Proof

	5 Efficiency Comparison
	6 Conclusion
	References

