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Abstract This paper presents a new direction in privacy preserving techniques for
social networks based on consensus-driven blockchain and mechanism design prin-
ciples. Privacy problem is among the class of the most important and fundamental
problems in social networks. The most commonly accepted privacy solution is to
incorporate a perfect data privacy policy and central system, which inherently lacks
transparency and trust. All existing privacy techniques deny undesired users access
to the information directly, but, in reality, the information may be forwarded to them
from other users who possess the information. Our user-controlled privacy mecha-
nism aims to control such data dissemination using simple game theoretic concepts
combined with blockchain technology. Our mechanism applies to DAG structured
networks (directed acyclic graphs), and our reward policy incentivizes the receivers
if they do not diffuse the message in the network. We establish blockchain powered
smart contracts to enable the flow of incentives in the system, without the involve-
ment of a trusted third party. The owner of the message has to pay for the rewards,
but our mechanism makes sure that the payment is minimum. In fact, the owner
will have more utility when he/she pays. Our mechanism satisfies the necessary con-
straints of mechanism design, namely individual rationality, incentive compatibility,
and weakly budget balance while ensuring privacy.
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1 Introduction

The advent of blockchain technology has led to a paradigm shift from centralised to a
decentralised and autonomous control. Blockchain is a decentralised verifiable public
ledger which maintains records of transactions in an append-only fashion. Identical
copies of the blockchain are distributed among each participating nodes in the net-
work, and any changes to the ledger are reflected across all copies. Initially envisioned
for secure transfer of decentralised digital currency [25], the technology has been
extended to provide a generalised framework for implementing decentralised appli-
cations requiring trusted computing and auditability [35], such as finance, Internet
of Things, governance applications, capital markets and e-health [7].

Social networking is pervasive in today’s world, leading to a boom in the infor-
mation economy. Social networking sites have become the preferred medium of
information sharing with peers by means of purchases, queries, conversations and
other related activities. However, such a popularity has been accompanied by grow-
ing concerns for privacy of its users [34]. Such sites form a database of personal
data that holds substantial economic value, serving as a hotbed for potential mar-
keting networks, malware, spam, illegal earnings and several other attacks [22, 34]
on the Internet. Leakage of critical data such as medical health records and business
information regarded as a business asset, could lead to dire consequences such as
identity theft, financial loss, harassment and fraud [12]. Social network privacy or
informational privacy is still in its infancy, with no well-defined security model. In
2015, medical data of 78.8 million patients, nearly a quarter of the U.S. population,
were stolen by a hack on the insurance corporation Anthem as a result of weak policy
enforcement and security systems [7].

To address these concerns, social network service providers have developed pri-
vacy policies and features [15] to balance the trade-off between privacy threats and
data sharing. Note that such privacy measures are traditionally supported by central-
ized systems, which lack trust and transparency, as evident from the recent breaches
in privacy reported in [11, 13].

1.1 Our Contribution

In an attempt to shift from a centralised privacy system to a user-controlled approach,
we propose a new direction that employs mechanism design theory combined with
blockchain technology to ensure privacy of sensitive data in social networks while
improving societal welfare, which hitherto has not been explored in the literature.We
propose a novel mechanism, called the Social Network PrivacyMechanism (SNPM),
that incentivizes the participants for not diffusing the private information into the net-
work.We leverage blockchain enabled smart contracts [3] as a decentralised approach
to automatize the incentive system and tackle trust issues in our privacy mechanism.
We prove that our mechanism satisfies all the required properties for a mechanism
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to function. Those properties are individual rationality, incentive compatibility and
weakly budget balance.

We consider the social network as a directed acyclic graph (DAG). Several algo-
rithms for general graphs are obtained from algorithms for DAGs such as [29]. There
exist several results that consider social networks with time label [17]. Again, tempo-
ral social networks can be considered asDAGs [18].Although it is not straightforward
to apply our mechanism to periodic networks, we strongly believe that it could be a
possible extension of our mechanism to general graph structures.

1.2 Example

Our mechanism is demonstrated in Fig. 1. A user m wishes to propagate a message
only to a set of his neighbours and promises a reward to each receiver who does
not propagate the message in the network. To prevent message dissemination, m
has a reward amount to incentivize his neighbours (agents a and b here) for not
propagating the message. As shown in the figure, user m rewards neighbour b with
an amount Re = 35 as an incentive to not propagate his message to user e. Again,
user e could bribe user b with a value Be = 28 to acquire the message from b. Since
Re > Be, user b refrains from propagating the message to e, as indicated by red
arrows. Our mechanism displays how the reward value is computed by each user
in the network, where all financial transactions are performed by a smart contract,
to restrict users from message propagation, and demonstrates how equilibrium is
attained while preserving message privacy along with the necessary properties of
mechanism design.

Fig. 1 A social network
example to demonstrate our
privacy mechanism. A user
m shares private information
only with users (a, b). The
arrows green symbolize
message transmission by m
to (a, b) and red symbolizes
forbidden dissemination to
agent e
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2 Related Works

2.1 Integrating Blockchain Technology to Social Networks

Although the blockchain paradigm was originally designed to maintain a decen-
tralised financial ledger, it has been extended to serve other applications requiring
trusted computing and auditability. Recently, several research efforts have focused
on blockchain based social networks. This establishes a decentralised approach to
connectivity to get rid of a centralised server, preventing any single authority from
enforcingmonitoring and control over the user generated data for financial incentives.
Some examples of decentralised social networks include Akasha [1], Diaspora [8]
and Steemit [30] among others. Such principles of decentralization has also been
applied for managing large data, such as Ancile [7] and MedRec [2] for electronic
health records (EHR) management in a medical network and for personal data [35]
management. Note that, one downside of the blockchain technology is that it is
resource intensive, and hence scalability is an issue for large scale systems. All exist-
ing results rely on the distributed ledger mechanism and external regulations such as
theHIPAAprivacy rule to address security of individual data. In this paper, privacy of
user data is maintained using simple mechanism design principles and the incentives
are managed using blockchain. Unlike the previous works stated, the transactions
maintained in our ledger are purely financial, to only regulate the financial incentives
in the system.

2.2 Anonymization of Social Networks

Social Network Anonymization is a countermeasure of linking attack, where unde-
sired users can infer protected information from published data. Such an attack is
prevented by removal or perturbation of certain information, while satisfying pri-
vacy notions. In relational databases, the most commonly accepted privacy notions
include k-anonymity [31], �-diversity [23] or t-closeness [21]. In the context of social
network privacy, such notions are extended to concepts such as k-isomorphism [5].
Several graphmodification techniques such as graph perturbation [14] and clustering
approaches [4] have been introduced, that meet privacy notions for social networks.

Social network anonymization usually addresses privacy problems arising from
data publication. On the other hand, we consider a different dimension of information
privacy in this work, i.e., preventing private data diffusion in social networks.
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2.3 Mechanism Design Towards Social Choices in Networks

In addition to the preference of outcomes of a mechanism (winner in an auction),
users may also be concerned with what private information gets leaked to others (the
valuation of the auctioned item). The latter notion of privacy has been addressed in
the literature using techniques of differential privacy [27, 28]. Informally, differential
privacy [10] captures the fact that a change in a single agent’s input has too small an
effect to jeopardize the privacy and learn any information about the agent from the
outcome of a joint computation. Note that, differential privacy offers a compelling
second-best solution concept when the exact dominant strategy truthful mechanism
is not known [28] as it offers approximate-truthfulness [9].

Li et al. [20] applies mechanism design theory to the auction design problem for a
seller to sell a commodity in a social network.While their work focuses on increasing
the number of users that know the auction information and maximizing the auction
bid, our work aims to minimize the number of participants that know the private
information. One might think that our mechanism is analogous to the mechanism
due to Li et al. However, because of the difference in objectives, the two mechanisms
do not share any similarity with each other.

3 Preliminaries

3.1 Blockchain

Blockchain is a distributed ledger technology typically managed by a peer-to-
peer network. Its non-trusting members record digital transactions into the shared
immutable ledger in a verifiable manner without the need of a centralised regulator.
Blockchain implements the concept of mining and proofs inorder to reach a con-
sensus on the transaction ordering in a decentralized fashion. Miners are a subset
of the network participants whose role is to validate transactions broadcasted into
the network and append these transactions grouped into a block to the blockchain.
To this end, they fiercely compete with one another to solve difficult computational
problems, and are rewarded (usually monetary) for their service. Proofs determine
which miner’s block will be appended next to the blockchain, such as proof-of-work
and proof-of-stake. Cryptocurrencies such as Bitcoin [25] and Ethereum [3] are built
atop such a technology, wherein the network members run distributed consensus
protocols. Recently, there has been an increasing interest to exploit the technology to
develop applications beyond digital currencies requiring tamper-proof network con-
sensus. Blockchain has attracted the interest of stakeholders across a wide range of
industries owing to its decentralised approach towards providing trust and integrity
in the network, such as healthcare, real estate, finance, cloud storage, governance
applications among others.



206 A. Paul et al.

3.2 Smart Contracts

Introduced in 1994 by Nick Szabo, a smart contract is “a computerized transaction
protocol that executes the terms of a contract” [32]. It is a user defined software
executed by a network ofmutually distrustful parties, and has receivedmuch attention
in the context of blockchains. Its correct execution is automatically enforced without
the arbitration of any central authority, and stores its result on the blockchain. One
such example of smart contracts are Ethereum [3], which builds a Turing-complete
instruction set to allow smart contract programming into the blockchain, and records
the contract states on the blockchain. Depending on the intended application, smart
contracts could be used towards financial, notarial or game-based applications among
others. Since such scripts are tamper resilient and their actions are publicly visible,
they are appealing in scenarios that require transfer ofmoney to respect certain agreed
rules. We regard such a feature offered by smart contracts as an important property
to achieve financial fairness in our privacy mechanism.

3.3 Mechanism Design

Mechanism design is a fundamental concept in economics and AI [26]. It is an art
of creating economic interactions with respect to a preferable outcome of the game
induced by the mechanism. We closely follow the mechanism design framework
in [24]. We consider a social network consisting of n persons or agents represented
by a set N , where each agent is indexed by i ∈ {1, . . . , n}. Every agent i ∈ N must
report its action ai ∈ Ai for the public decision, where Ai denotes the complete
action space of an agent i possible towards social welfare. Let a = (a1, a2, . . . an)
be a vector that denotes the action profile of all the agents i ∈ N , and A denotes the
complete action space for all agents in the network. We use the following notation
N−i to denote the set N \ {i} which is the set of all agents except agent i , and the
notation a−i to denote the action profile of all agents except agent i .

In the auction setting, every agents bid for a number of objects. For simplicity, in
this paper, we will assume that the number of objects is one. Every agent i ∈ N has
a value of the object vi ∈ R that indicates his willingness or valuation on that object.
The agents then take an action to report how much they want to pay for the bid. By
that, the action set Ai denotes the set of all possible report values. Let πi (a) be a
decision function of the mechanism where πi (a) = 1 when the agent i is a winner
who can receive the object and πi (a) = 0 otherwise. The winner i will then have to
pay an amount equal to pi for the object to the auctioneer. In the most well-known
Vickrey mechanism [33], the winner is the agent that report the largest value, i.e.
pii (a) = 1 if and only if ai = max

j∈N a j , and the price that she has to pay is equal to the

second largest value, i.e. pi = max
j∈N−i

a j . The utility of the agent i , denoted by ui (a)

is then computed as ui (a) = πi (a) · (vi − pi ).
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Given the basic definitions, we formalize the desirable three criteria for evaluating
a mechanism, which are individual rationality, incentive compatibility and weakly-
budget balanced.

Since every agent ai is rational, their action ai is in the selfish interest to maximize
their individual utilities ui (a). She might bid with the values larger or smaller than
her evaluation on the object. That usually lead to a smaller social welfare

∑n
i=1 ui (a).

If a mechanism is individually rational, the agent can be sure that reporting a honest
value, ai = vi in the auction mechanism, never lead to a negative utility.

Definition 1 A mechanism is individually rational if ui (vi , a′
−i ) ≥ 0 for all i ∈ N ,

and a′
−i ∈ A−i .

The incentive compatibility then guarantees that reporting the honest value will lead
to the maximum utility.

Definition 2 A mechanism is incentive compatible if ui (vi , a−i ) ≥ ui (ai , a′
−i ) for

all i ∈ N , ai ∈ Ai and {a−i , a′
−i } ∈ A−i .

Next, we will define the notion of weakly-budget balance.

Definition 3 Amechanism is weakly-budget balanced if the payment policy p does
not exhibit a budget deficit for a utility profile u, i.e.,

n∑

i=0

pi ≥ 0

Note that
∑n

i=0 pi is a sum of all agents’ payment in the network. The intuition for
a mechanism to be weakly-budget balanced is that, in case of a negative revenue, a
payment made by agents is not covered by the payment received by the agents in the
network. Besides, there is no external source to finance the mechanism to function
and provide an outcome.

4 Social Network Privacy Mechanism (SNPM)

In this section, we design a mechanism to conquer the problem of privacy in social
networks, which we call Social Network PrivacyMechanism (SNPM).We show that
our mechanism satisfies all the necessary properties, i.e., it is individually rational,
incentive-compatible and weakly budget balanced. First, we give an overview of our
model, to demonstrate the setting on which we enforce social network privacy.

4.1 Our Model

In our model, each agent i ∈ N = {1, . . . , n} in the social network has a set of
neighbours denoted by di ⊆ N , with whom the agents can communicate directly
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via the link/edge. An agent termed as messenger m ∈ N has a private message and
wishes to propagate the message to only a selected set of neighbours and discourage
them from further propagating to other agents in the network. Every agent in the
network is oblivious of the presence of other agents except his neighbours. In our
model, the messenger is not aware of the network structure beyond its neighbours.

We consider that the information diffusion flow in the network forms a direct
acyclic graph (DAG). Such an assumption is reasonable, evident from the existing
results in the social network literature [19], and extensions of algorithms on DAGs
to general graph structures [29]. There exists algorithms for conversion of periodic
graphs to DAGS [6], which could be a possible albeit challenging extension of our
mechanism to incorporate generic network structures.

In order to achieve a decentralised, permanent and uncensorable mode of pay-
ment, we use blockchain systems like Ethereum [3] and NEO [16], wherein every
agent joins the network (generates a unique identifier for each agent) and can access
all the transactional information on blockchain. Such a system maintains a log of
transactions of the agents via smart contracts. It relies on the multiple participating
entities in the system to avoid a single-point-of-failure and single-point-of-breach.
This makes the business model and incentive structure much robust and trusted,
instead of assuming the presence of a trusted authority. Our main idea is to reward
the agents who do not propagate the message. To this end, the messenger intends
to reward amount values Ui for every agent i ∈ N−m , allocated based on the pref-
erences of message sharing of the messenger. All the reward and bribe transactions
are automated through smart contracts.

Ui denotes the benefit of the messenger if the message is not propagated to agent
i . The utility of the messenger will increase by Ui ≥ 0 if the agent i do not receive
the message. On the other hand, every agent i ∈ N−m maintains a valuation vi for the
message propagated by themessenger. The utility of the agents i ∈ N−m increases by
a value vi ≥ 0 on acquiring the information. Agents who do not receive the message
from m may bribe their neighbours with an amount v′

i ≤ vi to acquire the message.
Again, the messenger rewards the non-propagating nodes (via smart contracts) with
a reward value ri ≤ Ui for not propagating the message. Hereon, we consider all the
transactions between the messenger and the agents are automated by smart contracts.

In our model, the action of every agent i is denoted as a tuple ai = (v′
i , d

′
i ). The

value v′
i ≤ vi is the bribe i pays to a neighbour who receives the message. The set

d ′
i ⊂ di is the set of neighbours (descendants) to whom i spreads the message on
receipt of bribe. The action space Ai is Vi × P(di )where Vi represents the set of real
number no larger than vi and P(di ) represents the power set of the neighbour set di .

Our decision function is represented by πi : A → {0, 1}, where πi (a) = 1 if agent
i is allocated the message due to the action a, and πi (a) = 0 otherwise. Therefore,
we denote the set π = {πi }i∈N−m as an allocation policy in this work.

The motive of every agent i is to acquire the message and their action ai are in
the selfish interest to maximize their individual utilities while receiving the message.
Therefore, the agents could misreport their valuations (bribe) of the message. A
privacy mechanism is individual rational if the utility of an agent reporting true
valuations is not negative.
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Amechanism is incentive compatible, if reporting the true valuations by the agents
in the mechanism is a dominant strategy.

The revenue generated by the mechanism is calculated as a sum of the payment
balance between the messenger and other agents in the network in an action profile.
The reward sum of the messenger equals Revm(a) = ∑

i∈N−m
ri , while every agent

i ∈ N−m pays their neighbours a sum equal to Revi (a) = ∑
i∈N−m

pi . The total rev-
enue for an action profile must be non-negative, to avoid shortage of budget in order
that the mechanism is weakly budget balanced. It is easy to follow that the revenue
generated by our mechanism Revi (a) = ∑

i∈N pi = 0. For all agents i ∈ N−m , the
reward value ri paid by the messenger to the agent i and the bribe sum v j ,∀ j ∈ d ′

i
is annulled by the payment pi made by the agent i in the overall revenue, thereby
resulting in a zero sum.

4.2 Our Mechanism

Given our model, we next propose our mechanism for social network privacy. An
overview of our mechanism is shown in Fig. 2. We design a recursive strategy to
define our privacy mechanism. We use the following notations. Let Bi denote the
total bribe amount that agent i ∈ N−m can offer to its neighbour who possesses a
message. Let Ri denote the total reward amount of the messenger m for an agent i ,

Fig. 2 Overview of SNPM. In the example, if agent a can acquire a higher amount of bribe Ba
from agent b than the reward Ra , it sends the message to agent b. On receiving the message, the
smart contract confirms the message receipt from b, and transfers the bribe amount from agent b to
agent a and records on the blockchain
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sufficient to stop i from receiving a bribe. Therefore, the total bribe i can pay for a
message is the sum of the bribe received from his neighbour set d ′

i along with his
own bribe amount vi . Therefore, every agent i can compute its budget as below:

Bi = vi +
∑

j∈d ′
i ,Uj≥v j

(Bj + ε) +
∑

j∈d ′
i ,Uj<v j

(R j ).

The above formula defines a recursive structure for the computation of the total
budget of an agent in order to bribe his neighbour possessing the message. Every
agent can pay a bribe value equivalent to the bribe sum of its descendants. Also,
the reward sum Ri for a messenger is the sum of the messenger’s utility for all the
descendants of a non-propagating agent.

The reward amount Ri of the messenger m is the collective utility of m if agent i
does not receive the message (utility is Ui ) and the utility of its descendants (utility
isUj ,∀ j ∈ d ′

i ), minus the total reward value paid bym if i along with its descendant
agents receive the message and do not propagate it to their descendants. We denote
the collective utility as Ui and the cumulative reward as Ri . Let (Ui )wi thout denote
the collective utility of the messenger when agent i does not receive the message, and
(Ui )wi th to denote the same when i receives the message. Similarly, let (Ri )wi thout

denote the collective reward for agent i when it does not receive the message, and
(Ri )wi th to denote the same when i receives the message. From the concept of VCG,
the total reward amount of the messenger to offer agent i is computed as below:

Ri = (Ui )wi thout − (Ri )wi thout − ((Ui )wi th − (Ri )wi th)

= (Ui )wi thout − 0 − (Ui )wi th + (Ri )wi th

= Ui +
∑

j∈d ′
i

(U j )wi thout +
∑

j∈d ′
i ,

Uj≥v j

(Bj + ε)

= Ui +
∑

j∈d ′
i ,

Uj<v j

(R j ) +
∑

j∈d ′
i ,

Uj≥v j

(Bj + ε).

Note that, in the above derivation, (Ui )wi thout is the utility of the messenger when
agent i does not receive the message, which is Ui . Also, (Ri )wi thout = 0 since an
agent i who does not possess the private message will not be rewarded as per the
mechanism. Given the scenario, the motive of the mechanism is to convince an
agent possessing the message to not accept bribe with the reward value. Naturally,
for an agent i , if Ri > Bi , the agent is motivated to not receive any bribe from its
descendants. Now we propose our mechanism based on the above definitions.

Definition 4 (Privacy Mechanism SNPM) Given the action profile a of the agents,
the privacy mechanism SNPM is defined by an allocation policy π and a payment
policy p, which are defined as follows.
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The allocation policy of the privacy mechanism is defined as:

πi (a) =
{
1, if Bi ≥ Ri

0, otherwise

Note that, there could exist multiple agents who are allocated the message, that is,
multiple agents with sufficient Bi ≥ Ri have the budget to bribe agents to acquire the
message, which also represents the subset of users for whomm does not have enough
reward to stop propagation. There exists a reward policy, which is the incentive given
by the messenger to the agents who do not diffuse the message to his descendants.
The reward policy of the privacy mechanism is defined as:

ri (a) =
∑

j∈d ′
i

(1 − π j )(Bj + ε).

Assume that under the allocation policy, an agent i gets the message, the payment
policy is defined as follows:

pi = Bi −
∑

j∈d ′
i

π j (a) · R j − ri (a)

The privacy mechanism allocates the message to all the agents whose bribe amount
Bi is greater than Ri . The smart contract consists of the function to confirm the receipt
of message from those agents i and transfer the bribe amount Bi to the bribed agents.
Each agent makes a net payment equal to his bribe value, minus the bribe amount
received fromall his descendants.Note that if an agent i ∈ N couldpotentially receive
the message from c > 1 number of agents possessing the message, then bribe value
vi of the agent i is equally distributed to all c agents by the smart contract. Similarly,
if multiple agents do not receive bribe from a common descendant i , the reward value
ri is equally divided among the honest agents in our mechanism.

4.3 Example

Before analyzing the properties of our privacymechanism SNPM,we study an exam-
ple given in Fig. 3 to demonstrate our mechanism. Figure3a shows a simple social
network, where each node represents an agent, and m denotes the messenger who
wishes to propagate the message to a subset of agents in the network. The edges
between the nodes represent the neighbourhood relationship. The values provided
alongside the nodes represent the valuations associated with each agent in the form
of Ui /vi , i.e., the first value represents the messenger valuation Ui and the value vi
represents the agent’s valuation for themessage. In this setting, we assume that all the
agents truthfully report their valuations. Suppose the messenger wishes to propagate
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(a) (b)

Fig. 3 a A social network example depicting the utilities of messenger/agents for a message
forwarded by agent m. b The corresponding information diffusion network

a private message only to a subset of his neighbours in the network, i.e., agents b
and c. The agent b has one descendant e and agent c has three descendants e, f and
g who could potentially bribe b and c respectively for the private information. The
recursive equation to obtain the cumulative bribe amount and reward for agents b
and c is computed as follows:

Rb = Ub + 1

2
Re.

Bb = vb + 1

2
Re.

Rc = Uc + R f + (Bg + ε) + 1

2
Re.

Bc = vc + R f + (Bg + ε) + 1

2
Re.

We note that, as per our definition, both the agents b and c are potential sources of the
private information for agent e, and hence the bribe value of e is equally distributed
to both b and c. We recursively compute the same for the descendants e, f and g as
follows:

R f = U f + 1

2
Rq .

B f = v f + 1

2
Rq .

Rg = Ug + 1

2
Rq .

Bg = vg + 1

2
Rq .

The agent e have Re = Ue = 3, Be = ve = 7 and πe = 1. Similarly, agent q has
Rq = 15, Bq = 30 and πq = 1. Solving the recursive equations, we obtain R f =
30.5, B f = 32.5 and π f = 1. Again, Rg = 20.5, Bg = 19.5 and πg = 0. Finally, the
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net budget for agents b and c obtained is Rb = 3.5, Bb = 11.5 and πb = 1, again
Rc = 51.5 + ε, Bc = 66.5 + ε and πc = 1. Hence, agents e, f and q successfully
receives themessage bybribing via the smart contract as illustrated by the information
diffusion network in Fig. 3b. In the figure, the green arrows denote the information
diffusion flow, and the red arrows denote the forbidden flow to unintended agents.
The budget of node g is not sufficient to bribe his neighbours c or q for the message,
and hence he is forbidden from the message. As per the payment policy, the payment
made by the agents e, q and f towards bribing their neighbours are pe = 7, pq = 30
and p f = 25 respectively.

4.4 Properties

Theorem 1 The Social Network Privacy Mechanism is individually rational.

Proof Assume that an agent i ∈ N−m truthfully reports her bribe v′
i ≤ vi to receive

the message. If v′
i > Ui , agent i receives the message and her utility ui (ai , a′) > 0,

while ifUi > v′
i , the agent i does not receive themessage and his payment due is zero

according to the payment policy. If an agent i reports a bribev′
i > vi such thatUi < v′

i ,
according to the allocation policy πi = 1 and he receives the message. However his
utility ui = (vi − v′

i ) − pi is negative. Therefore, for an arbitrary agent, when he
truthfully reports her bribe, his utility is non-negative and SNPM is individually
rational.

Theorem 2 The Social Network Privacy Mechanism is incentive compatible.

Proof To prove that SNPM is incentive compatible, we analyze the action of all the
agents in the social network in the following two cases:

Case 1: If an agent i ∈ N is forbidden from receiving the message, it indicates
that Ri > Bi and πi = 0 according to the allocation policy. For any agent j who is a
potential source of the message for node i , agent j receives an reward Bi + ε for not
receiving a bribe from agent i , whereas it receives a lesser bribe value Bi from agent
i . Therefore, agent j has no motivation in receiving a bribe from its descendant i as
it does not maximize his utility. Hence, not propagating the message is a dominant
strategy for an agent j whose descendant i exhibits Ri > Bi .

Case 2: If an agent i ∈ N has sufficient budget to bribe an agent for receiving the
message, it indicates that Ri < Bi and πi = 1 according to the allocation policy. For
any agent j , who is a potential source for the message to node i , agent j receives
an reward Ri for not receiving a bribe from agent i , whereas it receives a higher
bribe value Bi > Ri from agent i . Therefore, agent j has no motivation for stopping
a message propagation to descendant i in return of a bribe value Bi , as it maximizes
his utility. Hence, propagating the message is a dominant strategy for an agent j
whose descendant i exhibits Ri < Bi and is eligible to receive the message.

Therefore, for an agent i ∈ N possessing the private message, propagating the
message to only those agents who pay a higher bribe value than the reward offered
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and not propagating to the forbidden descendants is a dominant strategy. This ensures
incentive compatibility for SNPM.

We note that the SNPM mechanism is weakly budget balanced which follows
from the discussion in Sect. 4.1.

5 Conclusions and Future Work

In this paper, we generalized the mechanism design problem to the social network
privacy setting, in which a sender sends a private message to a selected list of agents
in the network, propagated to other agents through the neighbours of the sender.
Our mechanism promotes message privacy by leveraging blockchain powered smart
contracts to incentivize the receivers who do not disperse the message to their neigh-
bours. Our privacy mechanism is novel in the sense that it employs simple game
theoretic tools and distributed consensus mechanism to employ privacy in the social
network, while satisfying all the necessary conditions for a mechanism to function.
Our mechanism can function in a network involving multiple message propagation
frommultiple senders, as each message sharing is independent of the other, and does
not create any conflict the system. The previous attempts to ensure privacy of user
data in social networks were mainly achieved through centrally enforced policies
and privacy systems that lacks trust and transparency, or employing a public ledger
based distributed networking system to track private data, which suffers from scal-
ability issues. Our approach positively resolves the problem of shared data privacy
by employing simple albeit significant mechanism design principles.

We assume the underlying diffusion network to be a directed acyclic graph (DAG).
The existence of algorithms for conversions of periodic structures to DAGs creates
the possibility (although challenging) of an extension of our algorithm to generic
graph structures. We leave it as an open problem. In addition to that, we plan to
integrate time to our mechanism. That will decrease the possibility that our game
may continue forever.

It would also be an interesting direction to efficiently incorporate mechanism
design and blockchain technology in other aspects of privacy preservation in social
networks, such as anonymization and privacy preservation of user information.
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