
Sharing of Encrypted Files in Blockchain
Made Simpler

S. Sharmila Deva Selvi, Arinjita Paul, Siva Dirisala, Saswata Basu
and C. Pandu Rangan

Abstract Recently, blockchain technology has attracted much attention of the
research community in several domains requiring transparency of data accountabil-
ity, due to the removal of intermediate trust assumptions from third parties. One
such application is enabling file sharing in blockchain enabled distributed cloud
storage. Proxy re-encryption is a cryptographic primitive that allows such file shar-
ing by re-encrypting ciphertexts towards legitimate users via semi-trusted proxies,
without them learning any information about the underlying message. To facili-
tate secure data sharing in the distributed cloud, it is essential to construct efficient
proxy re-encryption protocols. In this paper, we introduce the notion of proxy self
re-encryption (SE-PRE) that is highly efficient, as compared to the existing PRE
schemes in the literature. We show that our self encryption scheme is provably
CCA secure based on the DLP assumption and our proxy re-encryption scheme
with self encryption is CCA secure under the hardness of the Computational Diffie
Hellman (CDH) and Discrete Logarithm (DLP) assumption. Our novel encryption
scheme, called self encryption, has no exponentiation or costly pairing operation.
Even the re-encryption in SE-PRE does not have such operations and this facilitates
the service provider with efficiency gain.

S. S. D. Selvi · A. Paul · C. P. Rangan (B)
Department of Computer Science and Engineering, IIT, Madras, India
e-mail: prangan@cse.iitm.ac.in

S. S. D. Selvi
e-mail: sharmioshin@gmail.com

A. Paul
e-mail: arinjita@cse.iitm.ac.in

S. Dirisala · S. Basu
0chain LLC, San Jose, USA
e-mail: siva@0chain.net

S. Basu
e-mail: saswata@0chain.net

© Springer Nature Switzerland AG 2020
P. Pardalos et al. (eds.), Mathematical Research for Blockchain Economy,
Springer Proceedings in Business and Economics,
https://doi.org/10.1007/978-3-030-37110-4_4

45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37110-4_4&domain=pdf
mailto:prangan@cse.iitm.ac.in
mailto:sharmioshin@gmail.com
mailto:arinjita@cse.iitm.ac.in
mailto:siva@0chain.net
mailto:saswata@0chain.net
https://doi.org/10.1007/978-3-030-37110-4_4

46 S. S. D. Selvi et al.

1 Introduction

The recent explosion of data volumes and demand for computing resources have
prompted individuals and organisations to outsource their storage and computation
needs to online data centers, such as cloud storage. While data security is enforced
by standard public-key encryption mechanisms in the cloud, secure data sharing is
enabled by efficient cryptographic primitives such as proxy re-encryption (PRE).
PRE enables re-encryption of ciphertexts from one public key into another via a
semi-trusted third party termed proxy, who does not learn any information about the
underlying plaintext. A user can delegate access to his files by constructing a special
key, termed as re-encryption key, using which the proxy performs the ciphertext
transformation towards a legitimate delegatee. PRE systems can be classified into
unidirectional and bidirectional schemes based on the direction of delegation. They
can also be classified into single-hop and multi-hop schemes based on the number
of re-encryptions permitted. In this work, we focus on unidirectional and single-hop
PRE schemes.

The current model of cloud storage is operated through centralised authorities,
which makes such a system susceptible to single point failures and permanent loss
of data. Recently, blockchain technology, initially designed as a financial ledger,
has attracted the attention of researchers in a wide range of applications requir-
ing accountable computing and auditability. Blockchain enabled distributed peer-
to-peer cloud storage solutions are steadily replacing its centralised counterpart. A
blockchain provides multiple parties to agree upon transactions and contracts in an
immutable and auditable way. Decentralised applications such as dApp providers
make use of this capability to provide services that are transacted in a publicly veri-
fiable manner. When the service provided by the dApp is not directly from the dApp
owner itself but from other third parties, it brings up additional challenges. How
would the end user using the dApp trust that the unknown third party service pro-
vides used by the dApp are trust worthy? This issue is specifically addressed, for
example, by the dApp called 0box [1] provided by 0Chain [2]. Such a storage dApp
allows any user to upload and share their files to their friends and families similar
to many other popular storage services. However, most existing services trust the
service provider and upload the content without any encryption. But 0box strives to
provide zero-knowledge storage such that the third party storage providers will not
know the uploaded content. This is achieved using an efficient CCA-secure proxy
re-encryption scheme, outlined in this paper. When a user shares the encrypted con-
tent with a trusted party, he provides the re-encryption keys using the public key of
the trusted party so that only that party is able to decrypt the content. By facilitat-
ing the associated transactions on the blockchain, this scheme provides end-to-end
transparency and security for end users to procure storage services at highly compet-
itive prices without worrying about the reputation of the storage providers. We first
propose a novel self-encryption (SE) scheme, which is much more efficient than the
standard CPA secure El-Gamal encryption scheme. This work is further extended to
design a CCA-secure proxy re-encryption scheme (SE-PRE) that adds re-encryption
functionality to self-encryption. Prior to our work, the most efficient PRE construc-

Sharing of Encrypted Files in Blockchain Made Simpler 47

tion was reported in [3] by Selvi et al. We show that our PRE design is much more
efficient than the scheme in [3].

Proxy Re-encryption (PRE): Proxy re-encryption is a term coined by Blaze,
Bleumer, and Strauss [4] and formalized by Ateniese, Fu, Green, and Hohenberger
[5, 6]. PRE has been studied extensively for almost two decades [3–7]. A good survey
of the PRE schemes and security models of PRE can be found in [8, 9].

2 Preliminaries

In this section we give the definitions of various assumptions adopted for proving the
security of the proposed schemes, the general and security model of SE and SE-PRE
schemes.

2.1 Definition

Definition 1 Discrete Logarithm Problem (DLP): The discrete logarithm problem
in a cyclic group G of order q is, given (q, P,Y) such that q is a large prime, P, Y
∈ G, find a ∈ Z

∗
q such that Y = aP .

Definition 2 Computation Diffie Hellman Problem (CDH): The Computation Diffie
Hellman Problem in a cyclic group G of order q is, given (q, P, aP, bP) such that
q is a large prime, P, aP, bP ∈ G, find Q such that Q = abP , where a ∈ Z

∗
q .

2.2 Generic Model of Self-encryption (SE)

The self encryption (SE) is a novel primitive that allows an user to store their files
securely with minimal computation overhead. This primitive is different from the
traditional public key encryption approach as encryption can be done only by the
owner of the file who possess the private key related to the public key which is used
for encrypting the file. It has the following algorithms:

1. Setup (κ): This algorithm is run by the trusted entity. On input of a security
parameter κ, the Setup algorithm will output the system parameters Params.

2. KeyGen (Ui , Params): This algorithm is run by the user Ui . This is used to
generate a public and private key pair (PKi , SKi) for the user Ui .

3. Self-encrypt (m, tw, SKi , PKi , Params): The encryption algorithm is run only
by the user Ui . This algorithm requires the knowledge of the private key SKi

corresponding to the public key PKi of user Ui . This takes as input the message
m, the tag tw, the private key SKi and public key PKi of user Ui . It will output a
ciphertext C which is the encryption of message m under the public key PKi and

48 S. S. D. Selvi et al.

tag tw. This approach differs from the traditional public key encryption where the
encrypt algorithm can be run by any user.

4. Self-decrypt (C , SKi , PKi , Params): The decryption algorithm is run by the
user Ui .On input of the ciphertext C , the private key SKi and the public key PKi

of user Ui , this will output the message m if C is a valid self encryption of m
under PKi , SKi and tw. Otherwise, it returns ⊥.

2.3 Generic Model of Proxy Re-encryption
with Self-encryption (SE-PRE)

The SE-PRE is a proxy re-encryption primitive that uses a self encryption scheme as
the base algorithm and provides a mechanism to delegate the self-encrypted cipher-
text. The SE-PRE scheme consists of the following algorithms:

1. Setup (κ): The setup algorithm takes as input a security parameter κ. This will
output the system parameters Params. This algorithm is run by a trusted party.

2. KeyGen (Ui , Params): The key generation algorithm generates a public and
private key pair (PKi , SKi) of user Ui . This algorithm is run by a user Ui .

3. ReKeyGen (SKi , PKi , PK j , cw, Params): The re-encryption key generation
algorithm takes as input a private key SKi of delegator Ui , public key PKi of
delegator Ui , public key PK j of delegatee U j and condition cw under which
proxy can re-encrypt. It outputs a re-encryption key RKi→ j . This is executed by
the user Ui .

4. Self-encrypt (m, tw, SKi , PKi , Params): The self encryption algorithm takes
as input the message m, the tag tw, the private key SKi of user Ui and public key
PKi of the user Ui . It outputs a ciphertext C which is the encryption of messagem
under the public key PKi , private key SKi and tag tw. This algorithm is executed
by the user Ui .

5. Re-encrypt (C, PKi , PK j , cw, RKi → j , Params): The re-encryption algo-
rithm takes as input a self-encrypted ciphertext C , the delegator’s public key
PKi , the delegatee’s public key PK j , the condition cw and a re-encryption key
RKi→ j corresponding to cw. It outputs a ciphertext D which is the encryption of
same m under public key PK j of user U j . This is run by a proxy who is provided
with the re-encryption key RKi→ j .

6. Self-decrypt (C , SKi , PKi , Params): The self decryption algorithm is run by
the user Ui . This will take as input the ciphertext C , the private key SKi of user
Ui and public key PKi of user Ui . It will output the message m if C is a valid
encryption of m under PKi and SKi of user Ui and tag tw. If C is not valid, this
algorithm returns ⊥.

7. Re-decrypt (D, SK j , Params): The re-decryption algorithm takes as input a
re-encrypted ciphertext D and a private key SK j of user U j . It outputs a message
m ∈ M, if D is a valid re-encrypted ciphertext of message m or the error symbol
⊥ if D is invalid. This algorithm is run by the user U j .

Sharing of Encrypted Files in Blockchain Made Simpler 49

2.4 Security Model

In this section we present the security model for the self-encryption scheme and the
proxy re-encryption scheme. The security model gives details about the restrictions
and oracle accesses given to the adversary. It is modelled as a game between a
challenger C and an adversary A.

2.5 Security Model for Self-encryption

The security of Self-encryption (SE) scheme against chosen ciphertext attacks (IND-
SE-CCA) is demonstrated as a game between an adversary A and a challenger C.
The game is as follows:

• Setup: C takes a security parameter κ and runs the Setup (κ) algorithm to generate
the system parameters Params. It provides Params to A. C then runs KeyGen
(U, Params) to generate a private and public key pair SK , PK of user U and
provides PK to A. SK is kept by A.

• Phase-1: A can adaptively issue queries to the following oracles:

– Self-encrypt (m, tw)Oracle: C runs the Self-encrypt (m, tw, SK , PK , Params)
algorithm to generate ciphertext C and returns it to A.

– Self-decrypt (C , PK) Oracle: C runs the Self-decrypt (C , SK , PK , Params)
and returns the output to A.

• Challenge: After getting sufficient training,A submits two messages m0, m1 from
M of equal length and a tag tw∗ to C. C picks a random bit δ ∈ {0, 1} and outputs
the ciphertext C∗ = Self-encrypt (mδ, tw∗, SK , PK).

• Phase-2:On receiving the challengeC∗,A is allowed to access the various oracles
provided in Phase-1 with the restrictions given below:

1. Self-decrypt (C∗) query is not allowed.
2. Self-encrypt (mδ, tw∗) query is not allowed.

• Guess: A outputs its guess δ
′
and wins the game if δ = δ

′
.

2.6 Security Model for Proxy Re-encryption
with Self-encryption

In this section we provide the security model for the SE-PRE scheme. The model
involves the security of original ciphertext as well as transformed ciphertext. The
ciphertext that can be re-encrypted is called the original ciphertext and the output of
the re-encryption is called the transformed ciphertext.

50 S. S. D. Selvi et al.

Security of Original Ciphertext The security of Proxy Re-encryption with Self-
encryption (SE-PRE) schemes against chosen ciphertext attacks (IND-SE-PRE-
CCAO) for the original ciphertext is modelled as a game between an adversary A
and a challenger C. The security game is described below:

• Setup: C takes a security parameter κ and runs the Setup (κ) algorithm to generate
the system parameters Params. The Params is then given to A.

• Phase-1:On receiving the system parameters, a target public key PKT and tag tw∗,
A is allowed to accessKeygen, Self-encrypt, Self-decrypt, Rekey, Re-encrypt, Re-
decrypt algorithms. A simulates the algorithms as oracles and A can adaptively
issue queries to these oracles. The various oracles provided by C are:

– Corrupted KeyGen (Ui): C runs the KeyGen (Ui , Params) to obtain the public
and private key pair (PKi , SKi). C returns SKi and PKi .

– Uncorrupted KeyGen (Ui): C runs the KeyGen (Ui , Params) to obtain the
public and private key pair (PKi , SKi) and returns PKi to A. SKi is not
provided to A.

– ReKeyGen (Ui ,Uj): C runs the ReKeyGen (SKi , PKi , PK j , cw, Params) to
obtain the re-encryption key RKi→ j and returns it to A.

– Self-encrypt (m, tw, PKi): C runs the Self-encrypt (m, tw, SKi , PKi , Params)
to obtain the ciphertext C and returns it to A.

– Re-encrypt (C , PKi , PK j , cw): C runs the Re-encrypt (C, PKi , cw, RKi → j ,

Params) to obtain the ciphertext D and returns it to A. Here, RKi→ j is the
re-encryption key from PKi to PK j under the condition cw.

– Self-decrypt (C , PKi): C runs the Self-decrypt (C , SKi , PKi , Params) and
returns the output to A.

– Re-decrypt (D, PK j): C runs the Re-decrypt (D, SK j , PK j , Params) and
returns the output to A.
For the ReKey, Encrypt, Re-encrypt, Decrypt, Re-decrypt oracle queries it is
required that public keys PKi and PK j are generated beforehand.

• Challenge:Ongetting sufficient training,Awill output two equal-length plaintexts
m0,m1 ∈M.Here, the constraint is: PKT is generated usingUncorruptedKeygen
and Rekey (PKT , PK j , cw), is not queried in Phase-1 for cw = tw∗ C flips a
random coin δ ∈ {0, 1}, and sets the challenge ciphertext C∗ = Self-encrypt (mδ ,
tw∗, SKT , PKT , Params). C then provide C∗ as challenge to A.

• Phase-2:A can adaptively query as in Phase − 1 with the following restrictions:

1. A cannot issue Corrupted KeyGen (UT) query.
2. A cannot issue Self-decrypt (C∗, PKT , tw∗) query.
3. A cannot issue Re-encrypt (C∗, PKT , PK j) query on C∗ from PKT to PK j

if PK j is Corrupted.
4. A cannot issue ReKey (PKT , PK j , cw) query if cw = tw∗.
5. A cannot issueRe-decrypt query on D∗, PK j if D∗ is the output of Re-encrypt

(C∗, PKT , PK j , cw) and cw = tw∗.

• Guess: Finally, A outputs a guess δ
′ ∈ {0, 1} and wins if δ

′ = δ.

Sharing of Encrypted Files in Blockchain Made Simpler 51

Security of Transformed Ciphertext The security of transformed of Proxy Re-
encryption with Self-encryption (SE-PRE) scheme against chosen ciphertext attacks
(IND-SE-PRE-CCAT) is modelled as a game between an adversary A and a chal-
lenger C. This is achieved by:

• Setup: C takes a security parameter κ and runs the Setup (κ) algorithm and
gives the resulting system parameters Params, a target public key PKT and tag
tw∗ to A.
Phase-1: This phase is similar to the Phase-1 of IND-SE-PRE-CCAO .We do not
provide Re-encrypt oracle as we are providing all the re-encryption keys for the
adversary.

• Challenge: OnceA decides Phase − 1 is over, it outputs two equal-length plain-
texts m0, m1 ∈ M. C flips a random coin δ ∈ {0, 1}, and sets the challenge
ciphertext as follows:

– Compute C∗ = Self-encrypt (mδ , tw∗, SKi , PKi , Params), (PKi , SKi) be the
public, private key pair of user Ui and Ui can be honest or corrupt.

– Sets D∗ = Re-encrypt (C∗, RKi→T) which is then sent to A.

• Phase-2: A adaptively issues queries as in Phase − 1, and C answers them as
before with the following restrictions:

1. A cannot issue Corrupted KeyGen (UT) query.
2. A cannot issue Re-decrypt (D∗, PKT) query.

• Guess: Finally, A outputs a guess δ
′ ∈ {0, 1} and wins the game if δ

′
= δ.

3 The Self-encrypt (SE) Scheme

Self-encrypt scheme is a special kind of encryption primitive that allows a user to
store file securely in cloud or any distributed storage. In this approach the owner
of the file uses his/her private key to encrypt the file. This significantly reduces the
computation involved in storing the file. We provide the self encryption scheme and
the prove its CCA security in the random oracle model.

3.1 The Scheme

The SE scheme consist of the following algorithms:

• Setup (κ):

– Let G be an additive cyclic group of prime order q. Let P be a generator of
group G.

52 S. S. D. Selvi et al.

– Let Δ = 〈Sym. Encrypt, Sym. Decrypt〉 be any symmetric key encryption
scheme. We may assume that Δ is a symmetric key encryption algorithm that
uses messages of block size k.

– Choose the hash functions,

H1 : {0, 1}lt × Zq
∗ → Zq

∗

H2 : Zq
∗ → {0, 1}lk

H3 : {0, 1}lm × G → {0, 1}l3

– Here lt is the size of the tag, lm is the size of the message and lk is the size of
the symmetric key used by the symmetric key encryption scheme Δ. Also, l3 is
dependent on the security parameter κ.

– Output Params = 〈q, G, P, H1(), H2(), H3(), Δ〉
• KeyGen (U , Params): The KeyGen algorithm generates the public and private
key of the user U by performing the following steps:

– Choose a random integer x
R← Zq

∗
– Output PK = 〈X = x P〉 and SK = 〈x〉.

• Self-encrypt (m, tw, SK , PK , Params): On input of message m, tag tw, private
key SK = x of userU , public key PK = x P of userU and the public parameters
Params this algorithm will generate the self encryption as follows:

– Choose random t ∈ Zq
∗

– Set ht = H1(tw, x).
– Set C1 = t + ht .
– Compute Key = H2(t)
– C2 = {Ĉi }(f or i=1 to l) and Ĉi = Sym.Encrypt (Mi , Key) for all i = 1 to l, l is the
number of blocks. Assume that m = M1, M2, . . . , Ml where |Mi | = k and k is
the block size of Δ.

– C3 = H3(m, t)
– Output the ciphertext C = 〈C1, C2, C3, tw〉.

• Self-decrypt (C , SKi , Params): Self decryption algorithm is used to decrypt the
files that are previously encrypted by the user U using his/her private key. This
algorithm does the following:

– ht = H1(tw, SKi).
– t = C1 − ht
– Key = H2(t)
– Compute Mi = Sym.Decrypt (Ĉi , Key) for all i = 1 to l and construct m =

M1, M2, . . . , Ml .

– If C3
?= H3(m, t) then, output m. Else, Output ⊥.

Sharing of Encrypted Files in Blockchain Made Simpler 53

Correctness of t :

RHS = C1 − ht
= (t + ht) − ht
= t;
= LHS

3.2 Security Proof

Theorem 1 If there exists a (γ, ε) adversary A with an advantage ε that can break
the IND-SE-CCA security of the SE scheme, thenC can solve the discrete log problem
with advantage ε′ where,

ε′ ≥ ε

Proof In this section we formally prove the security of SE scheme in the random
oracle model. The IND-SE-CCA security of the SE scheme is reduced to the discrete
logarithm problem(DLP). The challenger A is given with the instance of DLP (i.e
given (q, P,Y) such that q is a large prime, P,Y ∈ G, find a such that Y = aP .) If
there exist an adversaryA that can break the I N D − SE − CCA security of the SE
scheme, then C can make use ofA to solve the discrete logarithm problem, which is
assumed to be hard. Thus the existence of such adversary is not possible.

The challenger C sets the public key PK = Y (PK = aP) and the corresponding
private key SK = x = a (which is not known to C). C then provides PK toA.A has
access to various algorithms of SE and the hash functions as oracles. C simulates the
hash functions and the Self-encrypt, Self-decrypt algorithms as described below:

• Phase-1: A is given to access all the oracles as defined in the security model
IND-SE-CCA. Here it should be noted that C which does not have the knowledge
of private key SK = a provides the functionalities Self-encrypt, Self-decrypt
algorithm.

– The hash functions involved in the SE scheme are simulated as random oracles.
To provide consistent output, C maintains the lists LH1 , LH2 and LH3 corre-
sponding to the hash function H1, H2 and H3 involved in the SE scheme.

∗ H1 Oracle: When a query with input (tw, x) is made, the tuple 〈tw, x, ht 〉
is retrieved from LH1 and ht is returned, if (tw, x) is already there in LH1 list.
Otherwise, C does the following:

· If x P = Y , then abort. This is because C obtains the solution to DLP i.e
x = a.
· Pick ht ∈ G.
· If ht is already present in LH1 list, go to previous step.
· Store 〈tw, x, ht 〉 in LH1 list and output ht .

54 S. S. D. Selvi et al.

∗ H2 Oracle:When a query with t is made, C the tuple 〈t, Key〉 from LH2 list
is retrieved andwill return Key, if (t) is already present in LH2 list. Otherwise,
C does the following:

· Pick Key ∈ {0, 1}lk .
· If Key is already present in LH2 list, go to previous step.
· Store 〈t, Key〉 in LH2 list and return Key.

∗ H3 Oracle: When a query with input (m, T) is made, C retrieves the tuple
〈m, T, α〉 from LH3 list and returns α, if (m, T) is already present in LH3

list. Otherwise, C does the following:
· Pick α ∈ {0, 1}l3 .
· If α is already present in LH3 list, go to previous step.
· Store 〈m, T, α〉 in LH3 list and return α.

– Self-encrypt Oracle: When a Self-encrypt query is made with (m, tw) as input,
C does the following:

∗ Choose random t ∈ Zq
∗.

∗ Set ht = H1(tw, x).
∗ Set C1 = t + ht .
∗ Compute Key = H2(t).
∗ C2 = {Ĉi }(f or i=1 to l) and Ĉi = Sym.Encrypt (Mi , Key) for all i = 1 to l, l
is the number of blocks. Assume that m = M1, M2, . . . , Ml where |Mi | = k
and k is the block size of Δ.
∗ C3 = H3(m, t).
∗ Output the ciphertext C = 〈C1, C2, .C3, tw〉.
∗ Output the self-encrypted ciphertext C to A.

– Self-decrypt Oracle: When a Self-decrypt query is made with C = 〈C1, C2,

C3, tw〉 as input, C performs the following:
∗ If C is in LEncrypt list, pick m corresponding to C from the tuple 〈C, m〉 in
LEncrypt list and output m.
∗ If (tw,−) is present in LH1 list then, retrieve ht corresponding to (tw, −)

from LH1 list. Else, it returns ⊥.
∗ T = C1 − ht .
∗ Key = H2(t).
∗ Compute Mi = Sym.Decrypt (Ĉi , Key) for all i=1 to l and construct m =
M1 M2 ... Ml .

∗ If C3
?= H3(m, t) then, output m. Else, it output ⊥.

• Challenge Phase: After the first phase of training is over, A provides m0, m1 ∈
M, tw∗ such that (m0, tw∗) or (m1, tw∗) was not queried to Self-encrypt oracle
during Phase-1 and provides to C. C now generates the challenge ciphertext C∗ =
Self-encrypt (mδ, tw∗) and δ ∈R {0, 1}

• Phase-2: A can interact with all the oracles as in Phase-1 but with the following
restrictions:

– A cannot make the query Self-decrypt (C∗)
– A cannot make the query Self-encrypt (mδ, tw∗), δ ∈ {0, 1}

• Guess: Once Phase-2 is over, A output its guess δ
′
. A wins the game if δ = δ

′
.

Sharing of Encrypted Files in Blockchain Made Simpler 55

4 The Proxy Re-encryption with Self Encryption Scheme
(SE-PRE)

In this sectionwepresent a proxy re-encryption schemewhichuses the self encryption
proposed in Sect. 3. The SE scheme is modified such a way that it allows verifiability
of ciphertext by proxy during re-encryption without knowing the message. It helps
in achieving CCA security of SE-PRE. This also helps in avoiding the DDOS attack
being launched on Proxy’s service. The proxy is equipped with a method to identify
invalid ciphertext so that it will serve its functionality only to valid input. Also.the
SE-PRE algorithm can be deployed in a simple and efficient manner than using the
traditional PRE schemes available till date.

4.1 The Scheme

In this section we present the proxy re-encryption scheme SE-PRE that uses private
encryption algorithm. The SE-PRE proposed here uses a novel approach, consisting
of the following algorithms.

• Setup (κ):

– Let G be an additive cyclic group of prime order q. Let P be a generator of
group G.

– Let Δ = 〈Sym. Encrypt, Sym. Decrypt〉 be any symmetric key encryption
scheme. We may assume that Δ is a symmetric encryption algorithm work-
ing on block of size k.

– Choose the following hash functions:

H0 : {0, 1}lt → {0, 1}l0 ,
H1 : {0, 1}lt × Zq

∗ × G → Zq
∗,

H2 : Zq
∗ → {0, 1}lk ,

H3 : {0, 1}lm × Zq
∗ → {0, 1}l3 ,

H4 : Zq
∗ × {0, 1}(lc+l3+l5) × G → Zq

∗,

H5 : {0, 1}lt × Zq
∗ × G → {0, 1}l5 ,

H6 : {0, 1}lw × G × G × G → Zq
∗,

H7 : Zq
∗ × G → Zq

∗,

H8 : G × G → {0, 1}(lw+l p),

H9 : {0, 1}lu × Zq
∗ → Zq

∗,

Hc : {0, 1}∗ → {0, 1}lc .

56 S. S. D. Selvi et al.

– Here lt is size of the tag, lm is size of the message, lc is the size of the ciphertext,
l p is κ and lk is size of the symmetric key used in the encryption scheme Δ.
Also, lω , lu , l0, l3 and l5 are dependent on the security parameter κ.

– Output Params = 〈q, P , G, P, Hi ()(f or i = 0 to 9), Hc(), Δ〉
• KeyGen (Ui , Params): The KeyGen algorithm generates the public and private
key of the user Ui by performing the following:

– Choose a random integer xi
R← Zq

∗
– Output PKi = 〈Xi = xi P〉 and SK = 〈xi 〉.

• RekeyGen (SKi , PKi , PK j , cw, Params): This algorithm generates the re-
encryption key required to translate a ciphertext of user Ui into a ciphertext of
userUj . This is run by the userUi . The ciphertext to be re-encrypted is encrypted
under the public key PKi of userUi and with the condition cw, which are specified
by user Ui . This algorithm works as follows:

– Choose ω
R← ∈ {0, 1}lω

– Compute hc = H1(cw, xi , Xi) ∈ Zq∗
– Compute r = H6(ω, xi X j , Xi , X j) ∈ Zq∗
– Compute s = H7(r, X j) ∈ Zq∗
– Compute γ = r X j

– Compute the re-encryption key RKi→ j = 〈R1, R2, R3, R4, R5, R6〉 where,

R1 = s − hc ∈ Zq∗
R2 = r P ∈ G

R3 = (ω||Xi) ⊕ H8(γ, X j) ∈ {0, 1}lω+lg

R4 = H6(ω, γ, Xi , X j) ∈ Zq∗
R5 = H5(tw, xi , Xi) ∈ {0, 1}l5
R6 = H0(tw)

– Output the re-encryption key RKi→ j = 〈R1, R2, R3, R4, R5, R6〉
• Self-encrypt (m, tw, SKi , PKi , Params): On input of messagem, tag tw, private
key SKi , public key PKi of user Ui and the public parameters Params

– Choose random ω ∈ Zq∗
– Set ht = H1(tw, xi , Xi) ∈ Zq∗
– Compute C1 = t + ht .
– Compute Key = H2(t)
– Compute C2 = {Ĉi }(f or i=1 to l) and Ĉi = Sym.Encrypt (Mi , Key) for all i = 1
to l, l is the number of blocks. Assume that m = M1, M2, . . . , Ml where |Mi | =
k and k is the block size of Δ.

– Set C3 = H3(m, t)
– Find α = H5(tw, xi , Xi) ∈ {0, 1}l5

Sharing of Encrypted Files in Blockchain Made Simpler 57

– C4 = H4(C1, C2, C3, α, X)

– Set C5 = H0(tw)

– Output the ciphertext C = 〈C1, Hc(C2), C3, C4, C5)〉.
• Re-encrypt (C, PKi , PK j , cw, RKi → j , Params) : This algorithm is run by
the proxy which is given with the re-encryption key RKi → j by user Ui . This
generates the re-encryption of a ciphertext encrypted under public key PKi of
user Ui under the condition cw into a ciphertext encrypted under public key PK j

of user Uj . This algorithm does not perform any complex computation and this
greatly reduces the computational overhead on the entity that performs the role of
a proxy. This algorithm does the following computations :

– If C4 �= H4(C1, Hc(C2), C3, R5, tw, X) OR C5 �= R6, then it returns ⊥
– Set D2 = C2, D3 = C3, D4 = R2, D5 = R3

– Choose u ∈ {0, 1}lu
– Compute β = H9(u, R4) ∈ Zq

∗
– Compute D1 = β(C1 + R1) ∈ Zq

∗
– Set D6 = u
– Output the re-encrypted ciphertext D = 〈D1, D2, D3, D4, D5, D6〉

• Self-decrypt (C , SKi , Params): Self-decrypt algorithm is used to decrypt the
self-encrypted ciphertext C of a user that is stored by him in the cloud. This
algorithm performs the following:

– Find α = H5(tw, xi , Xi) ∈ {0, 1}l5
– If C4 �= H4(C1, C2, C3, α, tw, X), then it returns ⊥
– ht = H1(tw, SKi).
– t = C1 − ht
– Key = H2(t)
– Compute Mi = Sym.Decrypt (Ĉi , Key) for all i=1 to l and construct m =

M1 M2 ... Ml .

– If C3
?= H3(m, t) then, output m. Else, Output ⊥.

Correctness of t :

RHS = C1 − ht
= (t + ht) − ht
= t

= LHS

– Re-decrypt (D, SK j , Params): The Re-decrypt algorithm is used to decrypt
the re-encrypted ciphertext D. This algorithm does the following:
· Compute γ = x j D4

· Compute ω||Xi = D5 ⊕ H8(γ, X j)

· Compute r = H6(ω, x j Xi , Xi , X j) ∈ Zq∗
· Compute s = H7(r, X j) ∈ Zq∗
· ρ = H6(ω, γ, Xi , X j) ∈ Zq∗

58 S. S. D. Selvi et al.

· Compute β = H9(D6, ρ) ∈ Zq∗
· Compute t = β−1(D1) − s
· Find Key = H2(t)
· Compute Mi = Sym.Decrypt (Ĉi , Key) for all i = 1 to l and construct m =

M1, M2, . . . , Ml .

· If (C3
?= H3(m, t)) then, output m. Else, it returns ⊥.

Correctness of T :

RHS = β−1D1 − s

= β−1[β(C1 + R1)] − s

= [(t + ht) + (s − hc)] − s; Here ht = hc
= (t + s) − s

= t

= LHS

4.2 Security Proof

Security of the Original Ciphertext

Theorem 2 If a (γ, ε) adversary A with an advantage ε breaks the IND-SE-PRE-
CCAO security of the SE-PRE scheme in time γ, then C can solve the discrete log
problem or CDH with advantage ε′ where,

ε′ ≥ 1

qt
ε

Here, qt is the number of queries to H6 oracle.

Proof Due to space constraints, the proof of the theorem is given in the full version
of the paper.

Security of the Transformed Ciphertext

Theorem 3 If a (t, ε) adversary A with an advantage ε breaks the IND-SE-PRE-
CCAT security of the SE-PRE scheme, then C can solve the Computational Diffie
Hellman(CDH) problem with advantage ε′ where,

ε′ ≥ 1

qt
ε

Here, qt is the number of queries to H6 oracle.

Proof Due to space constraints, the proof of the theorem is given in the full version
of the paper.

Sharing of Encrypted Files in Blockchain Made Simpler 59

5 Experimental Analysis

In this section we provide the implementation results and time taken by various
algorithms in SE and SE-PRE scheme.We compare the efficiency of ourCCA secure
SE scheme with the traditional CPA secure El-Gamal scheme (Weaker security than
CCA) and report the same in Table1. Also, we have compared our SE-PRE scheme
with the only non-pairing unidirectional CCA secure PRE scheme by Selvi et al.
[3] available. This is reported in Table2. It is a known fact that pairing is very
expensive than other group operations and hence we are not taking any pairing based
schemes into consideration. The implementations are done on 2.4 GHz Intel Core
i7 quad-core processor and the results have been reported below. The programming
language used is GO language [10], and the programming tool is Goland 2018.2. The
cryptographic protocols are implemented using the edwards25519-curve [11], which
is the current standard deployed in cryptocurrencies [12] for fast performances. From
the performance comparison in Table1, we note that our CCA secure self-encryption
SE scheme is more efficient than the existing CPA-secure El-Gamal encryption
scheme [13]. Also, from Table2, it is evident that our self-proxy re-encryption SE-
PRE scheme without bilinear pairing is more efficient than the existing pairing-free
PRE scheme by Selvi et al. [3]. From the shown results, it is evident that our SE
encryption scheme is practical and suitable for cloud based scenarios where the
user themselves store their files. Also, the SE-PRE scheme provides a very efficient
approach to share encrypted files mainly in block-chain.

Table 1 Performance evaluation of the CPA secure El-Gamal encryption scheme and our self-
encryption scheme (all timings reported are in microseconds)

Algorithm CPA-secure El-Gamal scheme Our CCA secure SE scheme

Key generation 612.947 591.677

Encryption 420.307 65.416

Decryption 300.052 41.65

Table 2 Performance evaluation of the efficient pairing-free unidirectional PRE scheme due to
Chow et al. and our scheme (all timings reported are in microseconds)

Algorithm CCA-secure Selvi et al.
scheme

Our CCA secure SE-PRE
scheme

Key generation 714.271 579.702

First level encryption 1044.695 87.85

First level decryption 1554.78 60.356

Re-encryption key generation 478.368 796.036

Re-encryption 1087.52 23.216

Re-decryption 1077.05 745.031

60 S. S. D. Selvi et al.

6 Conclusion

In this paper, we have given a self encryption scheme SE based on discrete logarithm
(DLP) assumption and then extended it to a Proxy Re-encryption(SE-PRE) scheme
suitable for block chain and distributed storage. First, we formally prove the CCA
security of the SE and then the security of SE-PRE scheme in the random oracle
model. We have also implemented our SE-PRE scheme using GO language. From
the results of our implementation, it is evident that our SE-PRE scheme is much
efficient than the techniques available in literature till date. This makes it more
suitable for distributed applications. It will be interesting to see how one can design
a multi-recipient or broadcast PRE based on the self encryption approach that will
provide high efficiency gain in decentralised platforms.

Acknowledgements We would like to thank the anonymous reviewers whose comments helped
us improve this paper.

References

1. 0box application by 0chain: https://0chain.net/zerobox
2. Ochain website: https://0chain.net
3. Selvi, S.S.D., Paul,A., PanduRangan,C.:Aprovably-secure unidirectional proxy re-encryption

scheme without pairing in the random oracle model. In: CANS, Lecture Notes in Computer
Science, vol. 11261, pp. 459–469. Springer (2017)

4. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryptography.
In: Advances in Cryptology—EUROCRYPT′98, International Conference on the Theory and
Application of Cryptographic Techniques, Espoo, Finland, May 31 - June 4, 1998, Proceeding,
pp. 127–144 (1998)

5. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes
with applications to secure distributed storage. In: Proceedings of the Network and Distributed
System Security Symposium, p. 2005. NDSS, San Diego, California, USA (2005)

6. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes with
applications to secure distributed storage. ACM Trans. Inf. Syst. Secur. 9(1), 1–30 (2006)

7. Selvi, S.S.D., Paul, A., Pandu Rangan, C.: An efficient non-transferable proxy re-encryption
scheme. In: Proceedings of the 8th International Conference onApplications and Techniques in
Information Security—ATIS 2017, Auckland, New Zealand, July 6-7, 2017, pp. 35–47 (2017)

8. Nuñez, D., Agudo, I., López, J.: Proxy re-encryption: Analysis of constructions and its appli-
cation to secure access delegation. J. Netw. Comput. Appl. 87, 193–209 (2017)

9. IAgudo, I., Nuez, D., Lopez, J.: A parametric family of attack models for proxy re-encryption.
Cryptology ePrint Archive, Report 2016/293 (2016). https://eprint.iacr.org/2016/293

10. Bernstein, D.J.: The GO programming language. https://golang.org/
11. Bernstein, D.J.: Curve25519: new diffie-hellman speed records. In: Proceedings of the 9th

International Conference on Theory and Practice of Public-Key Cryptography—PKC 2006,
New York, NY, USA, April 24-26, 2006, pp. 207–228 (2006)

12. Mayer, H.: Ecdsa security in bitcoin and ethereum: a research survey. CoinFaabrik, June 28
(2016)

13. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

https://0chain.net/zerobox
https://0chain.net
https://eprint.iacr.org/2016/293
https://golang.org/

