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Abstract—Using graph clustering, we improve accuracy of
Kronecker social networks which are protected by differential
privacy. Ensuring the differential privacy implicates addition of
marginal changes to the network and publishing the modified
network data. In many cases, it induces a large gap between
the original network and the modified graph statistics, such that
very little useful information can be inferred from the published
graph. We use the fact that network structures in all graph
clusters are similar, to improve the utility of the publication
methods based on Kronecker graphs. Instead of anonymizing
the social network as a whole, we anonymize each cluster
of the network separately, and combine the sanitized results
thereafter. We justify why this idea provides an anonymized
social network with high utility and also prove that our output
social network ensures rigorous differential privacy guarantees.
Our experimental results show that our mechanism exhibits good
agreement of the structural properties with the real graphs, and
outperforms the existing anonymization techniques for certain
utility measures.

Index Terms—anonymization, differential privacy, social net-
work privacy, clustering

I. INTRODUCTION

Social network datasets are complex graphs representing
entities and connections between them. The entities correspond
to individuals connected by edges which depict relationships
such as the friendship network describing personal relation-
ships, communication network that illustrates the interactions
among the employees in an organisation and citation network
where authors are linked by co-citation relationships. In recent
years, social networks have received dramatic attention in
research and development [1].

As more and more social networks are being published for
knowledge discovery, privacy of individuals has become a seri-
ous concern. Naive anonymization techniques of releasing the
data by just removing identifiers of individuals is not enough
to preserve privacy. Several works such as [2] give a possible
attack using which an adversary can learn the structure of a
subgraph of the anonymized network. By knowing a subgraph,
attackers can guess with large probability if two particular
nodes have a link between them. They can further have users’
friend list, which is an information that most social network
users do not wish to reveal.

Differential privacy [3] is a notation that measures if a
particular information is protected from attackers. It is one

of the most commonly-used notations as it provides rigor-
ous guarantees of privacy while allowing diverse range of
queries to be answered approximately. There are three main
differential privacy models for social networks: node privacy,
edge privacy, and weighted edge privacy [4]–[6]. In this work,
we consider the edge privacy model. In this model, two
graphs that differ by just one edge are called “neighboring”
graphs. We modify our original graph using some probabilistic
methods, and ensure that the outputs of the methods from two
neighboring graphs are not distinguishable. From the outputs,
attackers then cannot distinguish between the original graph
with a link e and the original graph with the link e being
removed. By that, they cannot guess if the link e does exist
in the original graph. The information that two persons are
friends in the social network is not revealed to them.

There are several probabilistic methods proposed for the
edge privacy model. Most of these methods aim at releasing
a particular information of social networks. Those include the
work by Hay et al. [5] which aim to output degree distribution
of a graph, the work by Kenthapadi et al. [7] which aim to
output a graph which shortest path lengths of two particular
nodes are preserved, and the work by Ahmed et al. [8] which
aim to output a graph of which adjacency matrix is has the
similar eigen vectors to that of the original graph. On the other
hand, several methods are proposed to output a graph that can
give several graph information. Those include the work by
Nguyen et al. [9] and Xiao et al. [10]. Although the general-
purpose graph outputs are more desirable in practice, as far as
we know, we cannot get accurate information from the outputs
of most existing methods. It is therefore important to improve
their accuracy.

Many general-purpose methods, including those recently
proposed, are based on Kronecker graphs [11]–[14]. Due to
their rich mathematical structure, Kronecker graphs have been
well-studied in the literature. Leskovec et al. [15] showed
a stochastic variant of Kronecker graphs which can model
real world networks. Subsequently, it was shown in [15]–[17]
that these graphs possess many important properties of social
networks like power law degree distribution, betweenness
centrality distribution, community structure, and so on. Since
these graphs model real world networks so well, we use the
stochastic Kronecker graph model to anonymize our social
network and give rigorous privacy guarantees in the edge-
privacy model for differential privacy.978-1-7281-5628-6/20/$31.00 ©2020 IEEE
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A. Our Contribution

In this work, we aim to improve the accuracy of results ob-
tained from previous kronecker graph generation algorithms.

We propose a pre and post-processing technique
based on graph clusterings that generates Kronecker
graphs that are closer to the original social network.

Typically, most social networks have a few clusters. In this
work, we propose to provide each of these clusters as inputs
to the differential privacy methods. We then obtain respective
Kronecker graphs from the methods. Our output is an average
of those Kronecker graphs.

We observe that each of the clusters usually have similar
network structures and, without considering differential pri-
vacy models, the resulting Kronecker graphs are also very
similar. However, on applying differential privacy, the resulting
published Kronecker graph are altered. Intuitively, we can
think that the differential privacy methods add some noise to
the Kronecker graphs. Taking an average of a few Kronecker
graphs can then reduce the magnitude of noise we add during
the privacy process.

On the other hand, in this paper, we can show that taking
an average of the outputs does not increase the risk of
being attacked. If the method applies to each of the clusters
guaranteeing (ε ,δ )-differential privacy, publishing the average
output can also guarantee the same (ε ,δ )-differential privacy.

We show by our experimental results that we can signif-
icantly improve accuracy of the social network publications.
The distribution of degrees and shortest path lengths in our
published graphs is closer to the original graph than that
obtained without the pre- and post-processing. Some of our
published graphs have even better utility than the networks
without differential privacy.

B. Related Works

There are several results that use graph clustering to ob-
tain social network privacy. Before the notion of differential
privacy was introduced, methods for privacy notions, such as
k-anonymity [18] or `-diversity [19] were used, that involved
placing individuals into groups, then replacing information
of each individual with information of the group they are
assigned to. By that, it is natural to put individuals with
similar information to the same group. Because we can have
individuals with similar friends by clustering algorithms, there
are many results using clusters to improve the accuracy of the
published information [20]–[23]. On the other hand, it is not
natural to use graph clusters for differential privacy notions.
Most of methods for such privacy notions usually focus on
how to add minimal noise to the original network, and it is
not trivial to find relationships between the noise and clusters
of graphs. Also, it is required to prove mathematically that
such a clustering method produces a graph that satisfies the
notions, but it is not easy to link graph clusters with the proof.

To the best of our knowledge, all existing results for
differential privacy notions mentioning graph clusters (such
as [8]) do not aim to use graph clusters as a tool to achieve

better accuracy. They aim to have a resulting social network
which has similar graph clusters to the original graph. In other
words, we are the first to use graph clustering as a tool and
not as an expecting output.

Some of our ideas are adopted from the work by Smith
[24]. In their work, they also propose to divide information
to several pieces. However, they do not mention a way to
divide the information nor provide experimental results. We
found that dividing an information in an arbitrary way does not
improve an accuracy of our publication. We then significantly
modify the algorithm. As a result, we also need to provide a
new differential privacy guarantee proof for the new algorithm.

II. PRELIMINARIES

In this section, we give required notations and background
for this paper. Throughout this paper, we denote a set of
possible graphs by G and a set of possible outputs from our
algorithm by Y .

A. Differential Privacy

Differential privacy is a well-known and rigorous way to
quantify how much private a data publication is. A formal
definition of differential privacy under edge privacy model is
given as follows:

Definition 1 (Differential Privacy under Edge Privacy
Model [5]). Let A : G → Y be a randomized algorithm that
takes as input a graph G ∈ G and outputs values in the range
Y , where G is the space of all graphs on n nodes. A is (ε ,δ )-
differentially private on G if for all graphs G,G′ ∈ G which
differ in one edge and for all subsets S⊆ Y , we have,

P [A (G) ∈ S]≤ exp(ε)P
[
A (G′) ∈ S

]
+δ ,

P [A (G) ∈ S]≥ exp(−ε)P
[
A (G′) ∈ S

]
−δ ,

where the probability is taken over the randomness of A .

B. Kronecker Graphs [15]

Stochastic Kronecker graphs is a random graph model that
obeys common network properties. The model uses a standard
matrix operation, called the Kronecker product. The Kronecker
graph model is based on recursive construction of self-similar
graphs, starting with an initiator probability matrix K1 on
N1 vertices, where each entry in the adjacency matrix is
the probability that the edge is present in the graph. Using
Kronecker product, larger graphs K2, · · ·Kp are generated,
where Kp is a graph with N p

1 nodes. We define Kronecker
product as follows:

Definition 2 (Kronecker product of graphs). The Kronecker
product of two matrices A and B of dimensions n×m and
n′×m′ is given by:

C = A⊗B =


a1,1B a1,2B . . . a1,mB
a2,1B a2,2B . . . a2,mB

...
...

. . .
...

an,1B an,2B . . . anmB

 (1)
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We let Mp denote the pth Kronecker product of M, that is, M
multiplied with itself for p times.

Definition 3 (Stochastic Kronecker graphs). Let P1 be a N1×
N1 matrix, such that each entry θi j ∈P1 belongs to [0,1].
Let Pp be the pth Kronecker power of P1, i.e. Pp = P p

1 .
Interpret matrix Pp as the edge probability matrix of a graph
with N p

1 nodes, i.e. matrix Pp defines a distribution on graphs
with N p

1 nodes, such that, to sample an instance K = R(Pp),
we include edge (u,v) in K with probability Puv ∈Pp.

The KronFit Algorithm: Leskovec et al [15] gave an ef-
ficient algorithm called KronFit which fits a stochastic Kro-
necker graph model to a given social network. That is, they
use maximum likelihood estimation to find the values of an
initiator matrix P1, which maximizes the probability of G
begin generated from P p

1 . Since node labellings do not matter,
the likelihood of G is the average of the likelihood of G over
all permutations of its vertices. We have that, the likelihood
of G equal to l(θ) is,

l(θ) = logP
[
G
∣∣ θ
]
= log∑

σ

P
[
G
∣∣ θ ,σ

]
P
[
σ
∣∣ θ
]

= log∑
σ

P
[
G
∣∣ θ ,σ

]
P [σ ] ,

where σ is a permutation of the vertices of G. Using a gradient
descent algorithm they find θ̂MLE = argmaxθ l(θ).

The speed of KronFit algorithm is significantly improved in
the work by Kim and Leskovec [25]. However, as the work
provides a similar result as KronFit in term of Kronocker graph
results and speed is not the main issue of this work, we choose
to use the original KronFit algorithm.

Utility Preservation by Kronecker Graphs: Leskovec et
al. [26] show an empirical analysis of how Kronecker graphs
exhibit statistical properties of social networks, such as degree
distribution, small world phenomenon, and communities.

Mahdian and Xu [27] provide a theoretical study of the vari-
ous properties exhibited by stochastic Kronecker graph model.
A comparison between real-world networks and stochastic
Kronecker graphs fitted using a 2× 2 matrix P1 is demon-
strated in [15]. The analysis is shown against the following
real world networks - the autonomous systems (AS) network
obtained from the University of Oregon Route Views project
[28], a blog network (Blog-nat06all) and a large online so-
cial network (Epinions). They compare the fitted Kronecker
graphs to the social networks for global statistics like degree
distribution, hop plot and densification power law.

C. Kronecker Graphs with Differential Privacy

Mir et al [11] resort to the “moment matching method” of
Gleich et al [29] towards constructing a private estimator of
Kronecker parameters. Their algorithm matches four statistics
of the real graph data to their expected values over the proba-
bility distribution of the networks defined by these parameters.
The four parameters include computing: number of edges (E),
number of triangles (∆), number of hairpins (2-stars) and
number of tripins (3-stars). They compute differentially private
estimations of these four statistics. Further, they adapt the

Kronecker moment estimation in [29] with the differentially
private statistics to compute the private Kronecker matrix.

III. OUR ALGORITHM

Our algorithm is formally described in Algorithm 1. We
first divide our social network G into k partitions using graph
partition algorithms. As we expect all clusters to have similar
size, we believe that techniques based on spectral clustering
such as [30] are the most appropriate methods.

Algorithm 1 Pre- and post-processing method to improve
differential privacy algorithm based on Kronecker graphs

Input: Social network G
Output: Kronecker graph z̄ which satisfies the notion of

differential privacy
1: Partition the graph G into k clusters with similar sizes.

Let the set of nodes in each of the clusters be V1, . . .Vk.
2: Let A be an adjacency matrix of G and A[Vi,Vj] be a sub-

matrix of A of which set of rows are rows in A correspond
to Vi and set of columns are columns in A correspond to
Vj.

3: For all i, j, give the matrix A[Vi,Vj] as an input of a
private Kronecker graph algorithm. Let the Kronecker
graph obtained from the algorithm be z[Vi,Vj].

4: Output z̄ = ∑
i, j

z[Vi,Vj]/k2.

5: return z̄.

Next, we consider the adjacency matrix A of G. We divide
the matrix based on the clustering results. As nodes in the
graph are divided into k sets, columns and rows of the matrix
are divided into k sets, denoted by S1, . . . ,Sk. We then have a
sub-matrix A[Vi,Vj] from columns Si and rows S j of A, and
the number of sub-matrices obtained from the division is k2.
Those k2 sub-matrices are results of our pre-processing step.

We execute a differential privacy method for k2 times and
give a different sub-matrix to the method for every different
execution. Then, we get a different output z[Vi,Vj] at each
iteration. The output of our post-processing is the average of
those outputs.

We guarantee privacy of our pre- and post-processing in the
following theorem.

Theorem 1. If the differential privacy method we use in
Line 3 of Algorithm 1 is (ε,δ )-differentially private, then our
algorithm is also (ε,δ )-differentially private.

Proof. Consider two neighboring graphs G and G′ with ad-
jacency matrices A and A′. Suppose we divide the graph
into V1, . . . ,Vk. The inputs to the differential privacy method,
denoted by f , is then A[Vi,Vj] and A′[Vi,Vj]. As G and G′ are
different by one edge, only one element in A and A′ is different.
We assume without loss of generality that the differing element
is in A[V1,V1] and A′[V1,V1]. By that, for (i, j) 6=(1,1), we have
A[Vi,Vj] = A′[Vi,Vj] and for any possible z,

P[ f (A[Vi,Vj]) = z] = P[ f (A′[Vi,Vj]) = z].
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As there is only one differing element between A[V1,V1] and
A′[V1,V1], a graph corresponds to them are neighbors. By the
fact that f is (ε,δ )-differentially private, we have

P[ f (A[V1,V1]) = z]≤ exp(ε)P[ f (A′[V1,V1]) = z]+δ .

Let S (z̄) := {[z[Vi,Vj]]1≤i, j≤k : ∑
i, j

z[Vi,Vj]/k2 = z̄}. Denoting

Algorithm 1 by g, we have

P[g(A) = z̄]

= ∑
[z[Vi,V j ]]1≤i, j≤k∈S (z̄)

P[ f (A[Vi,Vj]) = z[Vi,Vj] for all i, j]

= ∑
[z[Vi,V j ]]1≤i, j≤k∈S (z̄)

∏
i, j

P[ f (A[Vi,Vj]) = z[Vi,Vj]]

= ∑
[z[Vi,V j ]]1≤i, j≤k∈S (z̄)

[ ∏
(i, j)6=(1,1)

P[ f (A[Vi,Vj]) = z[Vi,Vj]]

·P[ f (A[V1,V1]) = z[V1,V1]]]

≤ ∑
[z[Vi,V j ]]1≤i, j≤k∈S (z̄)

[ ∏
(i, j)6=(1,1)

P[ f (A′[Vi,Vj]) = z[Vi,Vj]]

· (exp(ε)P[ f (A′[V1,V1]) = z[V1,V1]]+δ )]

≤ ∑
[z[Vi,V j ]]1≤i, j≤k∈S (z̄)

[ ∏
(i, j)6=(1,1)

P[ f (A′[Vi,Vj]) = z[Vi,Vj]]

· exp(ε)P[ f (A′[V1,V1]) = z[V1,V1]]+δ ]

≤ exp(ε) ∑
[z[Vi,V j ]]1≤i, j≤k∈S (z̄)

[∏
i, j

P[ f (A′[Vi,Vj]) = z[Vi,Vj]]

+δ ]

= exp(ε)P[g(A′) = z̄]+δ

By the same argument as above, we can also show that

P[g(A) = z̄]≥ exp(−ε)P[g(A′) = z̄]−δ .

IV. EXPERIMENTAL ANALYSIS

In this section, we empirically evaluate the performance of
our proposed algorithm on real-world networks. We compare
our technique with the different results used for fitting the
parameters of the Kronecker model.

A. Settings

We use the following four social networks from the Stanford
large dataset collection [31].
• CA-GrQC and CA-HepPh: These are co-authorship net-

works from arXiv [15]. The nodes of the graph represent
authors, and an edge between two nodes exists if the
authors jointly wrote a paper. The networks are undirected
and the edges are unweighted.

• AS20: It is a technological infrastructure network [15],
where each node represents a router on the internet. Edges
indicate the presence of virtual or physical connection
between the routers. The network is undirected and the
edges are unweighted.

• Wiki-Vote: It is a who-votes-whom network, created from
Wikipedia adminship election data. The nodes in the
network represents volunteers and administrators, either

casting a vote or being voted on respectively. An edge
indicates a vote cast by the volunteer towards an ad-
ministrator. The underlying network is directed, but for
our experiments, we have converted it into an undirected
network by dropping the direction of the edges.

In order to demonstrate the correctness of our proposed
method, we compare it with other two approaches towards
fitting Kronecker graph model to real-world networks. We
generate the synthetic Kronecker networks from Kronfit [15]
and private [11] moment-based estimators of the network using
the provided library [31] and the code provided by Gleich
et al. [32] respectively apart from our algorithm for all the
experiments. Table 2 enumerates the results of our algorithm
alongside that of Mir et al. [11] and Leskovec et al. [15].

We set the number of clusters in our algorithm to 2, and
also set the size of Kronecker matrix, denoted by N1, in all
of the algorithms to 2. The results are then 2 × 2 matrices.
As social networks in our interest are undirected, the output
Kronecker matrices are symmetric. We denote the symmetric
2 × 2 matrices in the following form:[

a b
b c

]
B. Results

The results in Table 2 are the values of a,b,c of the
Kronecker matrices obtained from all of the datasets and
algorithms.

TABLE 2: Kronecker matrices obtained from all algorithms
and datasets when assuming that the matrices are in the form
of
[

a b
b c

]
Algorithm AS-20 CA-GrQC CA-HepPh Wiki-Vote
Kronfit [15] a = 0.99 a = 0.99 a = 0.86 a = 0.99

b = 0.50 b = 0.29 b = 0.57 b = 0.64
c = 0.39 c = 0.58 c = 0.18 c = 0.15

Private [11] a = 0.99 a = 0.99 a = 0.87 a = 0.99
b = 0.56 b = 0.54 b = 0.60 b = 0.55
c = 0.01 c = 0.14 c = 0.11 c = 0.01

Our work a = 0.99 a = 0.99 a = 0.89 a = 0.99
b = 0.56 b = 0.49 b = 0.56 b = 0.51
c = 0.01 c = 0.12 c = 0.08 c = 0.01

Given the parameter estimates of the graphs, we study
the distribution of different graph properties of the realised
Kronecker graphs along with the original graphs. All exper-
iments pertaining to private and our method are conducted
for (0.2,0.1)-differential privacy. We generate 100 synthetic
graphs from the estimated parameters using all three methods,
and compute different expected statistics [15] as enumerated
next over these 100 graphs. To prove correctness of our idea,
we use the most common graph clustering algorithm, spectral
clustering with k-means [30], [33] in this experiment.

1) Degree Distribution: the distribution of the degree of the
nodes.

2) Hop-plot: the number of reachable node pairs g(h)
within h hops, as a function of the number of hops h.

Authorized licensed use limited to: California State University Fresno. Downloaded on June 28,2021 at 21:45:53 UTC from IEEE Xplore.  Restrictions apply. 



(a) Hop plot (b) Degree Distribution (c) Scree plot (d) Clustering (e) Network value

Fig. 1: AS-20: Overlayed patterns of real graph and three fitted Kronecker graphs using Kronfit [15], Private [11] and our
algorithm Anon.

(a) Hop plot (b) Degree Distribution (c) Scree plot (d) Clustering (e) Network value

Fig. 2: CA-GrQC: Overlayed patterns of real graph and three fitted Kronecker graphs using Kronfit [15], Private [11] and our
algorithm Anon.

(a) Hop plot (b) Degree Distribution (c) Scree plot (d) Clustering (e) Network value

Fig. 3: CA-HepPh: Overlayed patterns of real graph and three fitted Kronecker graphs using Kronfit [15], Private [11] and our
algorithm Anon.

(a) Hop plot (b) Degree Distribution (c) Scree plot (d) Clustering (e) Network value

Fig. 4: Wiki-Vote: Overlayed patterns of real graph and three fitted Kronecker graphs using Kronfit [15], Private [11] and our
algorithm Anon.

3) Scree plot: the eigenvalues (singular values) of the graph
adjacency matrix, versus their rank using logarithmic
scale

4) Network values: the distribution of eigenvector compo-
nents (indicators of “network value”) associated to the
largest eigenvalue of the graph adjacency matrix

5) Average clustering coefficient: the average clustering co-
efficient as a function of the node degree. The clustering
coefficient is a measure of the extent to which nodes in
a graph tend to cluster together.

We compute and plot the above statistics for all four
datasets, experimented using our approach alongside other two

techniques as mentioned. In the overlayed patterns shown in
Figures 1, 2, 3 and 4, ”Original” refers to the original dataset,
”Kronfit” refers to the Kronecker graph generated from the
parameter estimates computed using Kronfit [15] algorithm,
”Private” refers to the Kronecker graph generated from the
parameter estimates computed using Private [11] algorithm
and ”Anon” refers to the Kronecker graph generated from the
parameter estimates computed in our algorithm.

In all of the graphs, compared to that obtained from the
other private Kronecker graph method [11], the data obtained
from our method has a closer number of hops and degree dis-
tribution to the original graph. In most the graphs, our method
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even performs better than the original Kronfit method [15]. For
the scree plot and network value, the previous two methods
have already performed very well giving almost the same
values as the original graphs. Our method gives the same
performances with those previous works. On the other hand,
our method does not perform very well for the clustering
result, but that can be expected. As we divide graphs into
clusters, the clustering structures in each of the clusters should
be different from the original graph. However, because the
previous works also cannot give a precise information for the
clustering structure, we can see in the results that our method
is not significantly worse than them.

By our pre- and post-processing technique, we can signif-
icantly reduce the computation time of differential privacy
methods. All of the methods including Kronfit and private
moment-based estimators take Ω(n3) when n is the number
of nodes in our social networks. By our technique, although
we have to execute the differential privacy methods for k2

times, as the number of nodes is now n/k, it takes Ω((n/k)3)
time in each execution. The overall computation is therefore
Ω((n/k)3 ·k2) = Ω(n3/k). We reduce the computation time of
the methods by at most k times.

V. CONCLUSION AND FUTURE WORKS

Using graph clusters, we propose a pre- and post-processing
technique to improve accuracy of differential privacy method
based on Kronecker graphs. Then, we show by our exper-
imental results that, by our technique, we can significantly
improve the accuracy of social network publication in terms of
number of hops and degree distributions. Also, we get similar
results to the previous works for other utility factors. We also
significantly reduce the computation time of the methods.

As indicated by our experiments, we have improved the
results of the existing method of Mir et al. [11]. It is very
straightforward to see that our process can be applied also
to other methods. We strongly believe that we can see similar
accuracy improvements when we apply this technique to other
methods, and we plan to verify that in our future works.

REFERENCES

[1] J. P. Scott and P. J. Carrington, The SAGE Handbook of Social Network
Analysis. Sage Publications Ltd., 2011.

[2] L. Backstrom, C. Dwork, and J. M. Kleinberg, “Wherefore art thou
R3579X?: Anonymized social networks, hidden patterns, and structural
steganography,” Commun. ACM, vol. 54, no. 12, pp. 133–141, 2011.

[3] C. Dwork, “Differential privacy,” in ICALP 2006, 2006, pp. 1–12.
[4] A. Sealfon, “Shortest paths and distances with differential privacy,” in

PODS 2016, 2016, pp. 29–41.
[5] M. Hay, C. Li, G. Miklau, and D. Jensen, “Accurate estimation of the

degree distribution of private networks,” in ICDM 2009, 2009, pp. 169–
178.

[6] S. P. Kasiviswanathan, K. Nissim, S. Raskhodnikova, and A. Smith,
“Analyzing graphs with node differential privacy,” in TCC 2013, 2013,
pp. 457–476.

[7] K. Kenthapadi, A. Korolova, I. Mironov, and N. Mishra, “Privacy via
the Johnson-Lindenstrauss transform,” arXiv preprint arXiv:1204.2606,
2012.

[8] F. Ahmed, A. X. Liu, and R. Jin, “Publishing social network graph
eigen-spectrum with privacy guarantees,” IEEE Transactions on Network
Science and Engineering, pp. 1–14, 2019.

[9] H. H. Nguyen, A. Imine, and M. Rusinowitch, “Differentially private
publication of social graphs at linear cost,” in ASONAM 2015, 2015, pp.
596–599.

[10] Q. Xiao, R. Chen, and K.-L. Tan, “Differentially private network data
release via structural inference,” in KDD 2014, 2014, pp. 911–920.

[11] D. J. Mir and R. N. Wright, “A differentially private estimator for the
stochastic kronecker graph model,” in EDBT/ICDT Workshops 2012,
2012, pp. 167–176.

[12] D. Li, W. Zhang, and Y. Chen, “Differentially private network data
release via stochastic kronecker graph,” in WISE 2016, 2016, pp. 290–
297.

[13] R. McKenna, G. Miklau, M. Hay, and A. Machanavajjhala, “Optimizing
error of high-dimensional statistical queries under differential privacy,”
Proceedings of the VLDB Endowment, vol. 11, no. 10, pp. 1206–1219,
2018.

[14] J. Ma, Q. Zhang, J. Lou, J. C. Ho, L. Xiong, and X. Jiang, “Privacy-
preserving tensor factorization for collaborative health data analysis,” in
CIKM 2019, 2019, pp. 1291–1300.

[15] J. Leskovec, D. Chakrabarti, J. M. Kleinberg, C. Faloutsos, and
Z. Ghahramani, “Kronecker graphs: An approach to modeling net-
works,” Journal of Machine Learning Research, vol. 11, pp. 985–1042,
2010.

[16] M. Mahdian and Y. Xu, “Stochastic kronecker graphs,” Random Struct.
Algorithms, vol. 38, no. 4, pp. 453–466, 2011.

[17] J. Kepner and J. Gilbert, Graph Algorithms in the Language of Linear
Algebra. Society for Industrial and Applied Mathematics, 2011.

[18] L. Sweeney, “k-anonymity: A model for protecting privacy,” Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
vol. 10, no. 5, pp. 557–570, 2002.

[19] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam,
“l-diversity: Privacy beyond k-anonymity,” ACM Transactions on Knowl-
edge Discovery from Data (TKDD), vol. 1, no. 1, 2007.

[20] A. Campan and T. M. Truta, “Data and Structural k-Anonymity in Social
Networks,” in PinKDD 2008, 2008, pp. 33–54.

[21] F. Yu, M. Chen, B. Yu, W. Li, L. Ma, and H. Gao, “Privacy preser-
vation based on clustering perturbation algorithm for social network,”
Multimedia Tools and Applications, vol. 77, no. 9, pp. 11 241–11 258,
2018.

[22] S. Jones and E. O’Neill, “Feasibility of structural network clustering for
group-based privacy control in social networks,” in SOUPS 2010, 2010,
pp. 1–13.

[23] J. Casas-Roma, J. Herrera-Joancomartı́, and V. Torra, “A survey of
graph-modification techniques for privacy-preserving on networks,” Ar-
tif. Intell. Rev., vol. 47, no. 3, pp. 341–366, 2017.

[24] A. D. Smith, “Efficient, differentially private point estimators,” CoRR,
vol. abs/0809.4794, 2008.

[25] M. Kim and J. Leskovec, “The network completion problem: Inferring
missing nodes and edges in networks,” in SDM 2011, 2011, pp. 47–58.

[26] J. Leskovec, D. Chakrabarti, J. M. Kleinberg, and C. Faloutsos, “Re-
alistic, mathematically tractable graph generation and evolution, using
kronecker multiplication,” in PKDD 2005, 2005, pp. 133–145.

[27] M. Mahdian and Y. Xu, “Stochastic kronecker graphs,” Random Struct.
Algorithms, vol. 38, no. 4, pp. 453–466, 2011.

[28] RouteViews, “University of Oregon route views project, online data and
reports,” http://www. routeviews.org, 1997.

[29] D. F. Gleich and A. B. Owen, “Moment-based estimation of stochastic
kronecker graph parameters,” Internet Mathematics, vol. 8, no. 3, pp.
232–256, 2012.

[30] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis
and an algorithm,” in NIPS 2002, 2002, pp. 849–856.

[31] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[32] D. F. Gleich, “Kronecker moment based estimation code,” https://
dgleich.com/gitweb/?p=kgmoments;a=summary, 2011.

[33] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
McLachlan, A. F. M. Ng, B. Liu, P. S. Yu, Z. Zhou, M. Steinbach, D. J.
Hand, and D. Steinberg, “Top 10 algorithms in data mining,” Knowl.
Inf. Syst., vol. 14, no. 1, pp. 1–37, 2008.

Authorized licensed use limited to: California State University Fresno. Downloaded on June 28,2021 at 21:45:53 UTC from IEEE Xplore.  Restrictions apply. 


