
Extracting the Combinatorial Test Parameters and
Values from UML Sequence Diagrams

Preeti Satish, Arinjita Paul, Krishnan Rangarajan
Department of Computer Science and Engineering

Dayananda Sagar College of Engineering
Bangalore, India

preetisatish8@gmail.com, arinjita.paul@gmail.com, krishnanr1234@gmail.com

Abstract— In the current practice, the Combinatorial Test
Design Model (CTDM) is designed by the test designers manually
leveraging their experience in testing. Their involvement,
perception, domain knowledge and testing proficiency are needed
to analyze the requirements document and design the test model.
Till date we know of no automated method that has eased the
process of deriving the Combinatorial Test Design Model.

Requirements document and analysis artifacts like UML
activity diagrams and sequence diagrams hold information on
parameters, values and constraints of the underlying CTDM.
Our research focus is to develop a tool that assists test designers
in coming up with the CTDM. This paper presents an approach
to extract CTDM related information such as parameters and
values from sequence diagrams. Our key contribution in this
paper includes proposing a rule-based method for identifying the
model elements from the sequence diagrams with the supporting
rules and extraction algorithms. The rules have been applied
onto individual sequence diagrams and results qualitatively
discussed based on the general understanding of the
requirements.

Keywords— combinatorial testing; sequence diagram; test
design model;

I. INTRODUCTION

The key to test design of an application is identifying the
input parameters and the associated input space from where
their values are drawn. Interaction between the values of the
different parameters can trigger faults and cause an application
to fail. Combinatorial Testing (CT) is a testing method that
focuses on covering combinations of values of these
parameters. In the entire CT process, deriving the
Combinatorial Test design model (CTDM) is a very
fundamental and an important prerequisite [16]. CTDM
consists of test parameters, parameter values and constraints
involved between the parameters and their values. Further the
parameters can be classified as input and output parameters
and values as assumed values, invalid value, computed values,
out of range values etc. In the contemporary, the CTDM is
modeled by test designers without much tool support. Their
involvement, perception and testing proficiency is needed to
analyze the requirements documents and design manuscripts.
Till date we know of no automated method that has eased the
process of deriving the CTDM. The extensive survey done on

CT [16] reveals that modeling the SUT for CT is still an open
research issue. Finding parameter and values is a creative
process [8]. The key ideas on how to identify parameters and
values from requirements are given in [6]. Deriving the
CTDM elements from activity diagrams is explored and
reported in our previous work [26]. Recognizing further need
for increased automation and improved results, our interest
lies in investigating the use of analysis artefacts like UML
sequence diagrams as additional source of inputs for deriving
the CTDM. Our investigation reveals that though automation
is very desirable, the nature of the input sequence diagrams is
such that complete derivation of CTDM from sequence
diagrams alone may not be possible. In our initial study, we
did not find constraints showing up directly in the sequence
diagrams. Identifying CTDM elements from sequence
diagrams is also quite complex because the sequence diagram
can be drawn in diverse ways, from an abstract level to most
detailed level, based on the style the designer adopts. The
same sequence can be expressed in multiple ways using
multiple sequence diagram constructs like guard condition,
combined fragments and interaction use. Automated analysis
of sequence diagrams can help to identify many of the
parameters, values of the underlying CTDM and this input on
CTDM can be fused with similar information derived from
analyzing requirements document and other analysis artefacts
like activity diagrams[26] etc and incorporated in a tool that
assists test designers in coming up with the CTDM.

This paper presents a novel approach to extract CTDM
related information from sequence diagrams. Our key
contribution in this paper includes proposing a rule-based
method for identifying the model elements from the sequence
diagrams with the accompanying analyzer tool (UML
Sequence diagram Analyzer & Modeler) that extracts the
design elements. These rules have been applied independently
onto individual sequence diagrams and results verified based
on the general understanding of the requirements.

The rest of the paper is organized as follows: Section 2
briefly covers the related work. Section 3 sheds light on our
approach, section 4 explains the implementation details, along
with the observations that are amenable for automated analysis
and Section 6 includes concluding comments and possible
future work.

2014 IEEE International Conference on Software Testing, Verification, and Validation Workshops

978-0-7695-5194-4/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSTW.2014.11

87

2014 IEEE International Conference on Software Testing, Verification, and Validation Workshops

978-0-7695-5194-4/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSTW.2014.11

88

II. RELATED WORK

We briefly discuss the related work from two perspectives,
namely: usage of sequence diagram for test case generation and
combinatorial test model identification.

Zoltan et al. [27] has surveyed and have given a detailed
picture on 13 semantics of UML 2.0 sequence diagrams and
how they differ. The Object Management Group (OMG)
specification [31] gives a basic awareness on how sequence
diagram semantics work. The author explains the usage of
formal semantics to interpret the sequence diagrams in
practice. Many published papers address generation of test
cases from sequence diagrams as applicable to general
software testing. Samuel et al. [7] create Message Dependency
Graph (MDG), an intermediate form from sequence diagrams
for further analysis. For each condition on the sequence
diagram, slices are created from MDG using edge marking
dynamic slicing method. Based on these slices, test cases are
generated for cluster level testing. Nayak et al. [2] present an
automatic approach to synthesize the test data with the
information rooted from sequence diagram, class diagram and
OCL constraints and map it onto an intermediate form called as
Structured Composite Graph (SCG). Test specifications are
then generated from SCG and in turn test data is generated for
each specification using a constraint solving system. Cartaxo et
al. [15] propose a method to transform a sequence diagram into
a Labelled Transition System (LTS) and obtain test cases by
traversing the LTS using Depth First Search (DFS).

A detailed widespread survey on CT is done by Nie et al.
[16] covering all aspects of CT, from test modeling to the
applications of CT. Heuristics to find the factors, levels and
constraints are given by Krishnan et.al. [6]. The basis of
category partition method (CPM) introduced by Ostrand et al.
[28] is to split the input domain into categories and choices.
Grochtmann and Grimm [8] used the classification Tree
Method (CTM) to segregate the input domain into
classifications and classes and further model it in tree structure.
Borazjany et al. [17] propose an input space modeling
methodology using two steps, Input Structure Modeling (ISM)
and Input parameter Modeling (IPM). Grindal & Offutt et al.
[20] presents a method for CT modeling known as Input
Parameter Model (IPM). Segall et al. [3] enumerate the
frequently occurring correctness, completeness and redundancy
issues and hence guiding the testers.

III. OUR APPROACH

The paper presents a rule based semi-automated approach
[26] to derive the information related to CTDM from the UML
2.0 sequence diagrams. This reported work has been
implemented by us in the in-house tool UML sequence
diagram analyzer and CT modeler. Fig.1 shows the sequence
of steps in our approach, which takes UML 2.0 sequence
diagrams as input in Step-1 and outputs information relating to
CTDM like parameters and associated values in the final step.
We have experimented this approach on individual sequence
diagrams created by us from analyzing few requirements
documents and few others sourced from internet. The
sequence diagrams [10] [22] are used mainly to show the
interactions between objects in time sequential order to

Fig. 1. Steps in deriving CTDM from sequence diagram

achieve the functional requirements. The diagram conveys this
information along the horizontal and vertical dimensions. The
vertical dimension is from top to down, and shows the time
sequence of messages/calls as they occur, and the horizontal
dimension is from left to right and shows the object instances
that the messages are sent to. The messages exchanged can be
synchronous, asynchronous or return messages. UML 2.0
sequence diagrams supports a collection of fragments, such as,
choice operator’s alt, opt and break, repetition operator loop
and concurrencies par which are executed under specific
named conditions. The relevant sequence diagrams are created
in Altova UModel [14] tool. Altova UModel [14] is an UML
tool for software modeling and application development. In
Step-2 of our approach, the export feature of Altova U Model
is used and the information in the diagram is converted into an
XMI code. XML Metadata Interchange (XMI) [19] is an open
standard file format for storing and exchanging the metadata
information. The exported XMI file contains the UML
sequence diagram information in document form which forms
the input for our tool. In Step-3 of our approach, the UML
sequence diagram analyzer and CT modeler tool is used to
execute the formulated rules on the XMI code and extract the
CTDM elements, which is the desired output.
As in our previous work of deriving the CTDM from activity
diagram [26] we have used a rule based approach in this work
as well. We analyzed the sequence diagram constructs set [10]
[22] and found that the synchronous message calls and
combined fragments alt, opt, break and loop with guard
conditions are the constructs that are useful in finding CTDM
related information. We also noticed that other sequence
diagram constructs did not reveal the CTDM related
information directly. We have identified rules specific to
synchronous message calls and combined fragments alt, opt,
break and loop with guard conditions constructs. For each
construct, we have identified three rules, one rule each for
parameter identification, value identification and for linking
the parameters and values. We have devised algorithms for
parsing the XMI file to apply these rules and extract relevant
information. We classify sequence diagrams for rule
applications as follows:

8889

A. Simple sequence diagrams. Simple sequence diagrams
contain just the lifelines and messages. It shows a series of
interactions between the objects or between the user and
the system [32].
1) Simple Sequence diagrams with synchronous

messages.
2) Sequence diagrams with customer console
3) Synchronous messages with argument passing.

B. Sequence diagrams with alt combined fragment.
1) Alt with guard conditions without relational operator
2) Alt with guard conditions with relational operators

C. Sequence diagrams with opt, break and loop.
1) Sequence Diagram with opt Combined Fragment
2) Sequence Diagram with break Combined Fragment
3) Sequence Diagram with loop Combined Fragment

We discuss the rules and the corresponding algorithms for
the above types in section IV.

IV. RULES AND ALGORITHMS

A. Simple Sequence Diagrams
1) Simple Sequence Diagrams with synchronous

messages: Synchronous messages are complete messages
passed between objects. They are denoted by a solid
arrowhead as shown in Fig.2. There will be a reply message
for every sent message. The caller object cannot continue
processing further until it receives a reply. Hence this
classification helps in identifying the parameters and their
respective values directly.

a) Rule and Algorithm for parameter extraction:
Rule name:Syncmsg_param.
Rule Narration: The synchronous message passed by the caller
as shown in Fig.2 is likely to form the parameter and the
return message the value. The algorithm for syncmsg_param
rule is shown in Fig.3.

Fig. 2. Generic depiction of a sequence diagram showing synchronous
message.

Fig. 3. Algorithm “Syncmsg_param”.

b) Rule and Algorithm for value extraction:
Rule name: Syncmsg_value.
Rule Narration: In synchronous message passing, the return
message sent back to the sender within the same activation bar
as shown in Fig.2 is likely to provide the value.
Algorithm: The Syncmsg_val algorithm is similar to the
syncmsg_param algorithm. In essence repeat the first four
steps, and if found true, display the value of the attribute
"name" of the reply message node as the value.

c) Rule and Algorithm for Linking the parameters and
their values .
Rule name: Syncmsg_LinkPV
Rule Narration: The synchronus message from the sender and
its corresponding reply from the reciever within the same
activation bar are likely to form the parameter and its
associated value respectively.
Algorithm:The first 4 steps of the algorithm Syncmsg_LinkPV
is similar to the syncmsg_param algorithm. In essence we
need to repeat the first four steps, and if found true display the
value of the attribute "name" of the synchronous and its reply
message node as the parameter and its value respectively.

d) An illustration of the approach: Fig.4(a) shows the
sequence diagram relating to Stock Payment,where a customer
enquires if a product is in stock and makes payment. Fig.4(b)
shows the suggested CTDM elements obtained from applying
our approach. Fig.4(c) shows the manually interpreted
refinement of Fig.4(b) on manual analysis of the sequence
diagram in Fig.4(a), where in the paymoney parameter is
ignored.

Step 1: Begin
Step 2: Open the XMI file in read mode
Step 3: Search a message of type reply,

a) Find the object lifeline from where it was
sent. This forms the receiver lifeline.

b) Identify the synchronous message received
immediately above the reply message at this
receiver lifeline.

Step 4: For the same reply message,
a) Determine the object lifeline where it was

received. This forms the sender lifeline.
b) Verify if the synchronous message was sent

from the same.
Step 5: If true, display the value of the attribute “name" of

 the synchronous message node as parameter.
Step 6: END

8990

Fig. 4. Stock Payment case study (a) Sequence diagram (b) Suggested
automated results (c) Manually refined and verified CTDM elements.

2) Simple Sequence Diagrams with Synchronous
Messages Involving Customer Console: The reason a Software
Under Test (SUT) exists is to process its inputs and inputs are
the factors that has an influence on the test run. Hence, the
SUT input variables should be considered as test parameters
[30].Our observation shows that since customer console is the
user object external to the system and provides input to the
system as shown in Fig.5, it increases the degree of confidence
of identifying the CTDM elements. As there is no standard
naming convention to recognize a customer console object
from sequence diagrams, we provide the customer console
object’s name as an input from the test designer to our tool.

Fig. 5. Generic fragment of a sequence diagram showing customer console.

a) Rule and algorithm for parameter extraction :
Rule name: CustomerConsole_param
Rule narration:The outgoing message from the customer
console object towards the system object lifeline are
parameters. The algorithm is shown in Fig.6.

Fig. 6. Algorithm “CustomerConsole_param”.

b) Rule and algorithm for value extraction:
Rule name: CustomerConsole_value
Rule Narration: The incoming messages towards the customer
console object from the system object lifeline are values. The
algorithm is shown in Fig.7.

Fig. 7. Algorithm “CustomerConsole_value”.

c) Rule and algorithm for Linking the parameters and
their values:
Rule name: CustomerConsole_LinkPV
Rule Narration: The outgoing messages from the customer
console object to the system are parameters, and its reply
message from the system back to console are the associated
values. The algorithm is shown in Fig.8.

Fig. 8. Algorithm “CustomerConsole_LinkPV”.

(a)

Parameter Request
product

In
stock?

Paymoney

Value 1 YES yes reciept
Value 2 NO no

(b)

Parameter Product Name Stock Status
Value 1 Name of product

available
available

Value 2 Name of product not
available

Not available

(c)

Step 1: Begin
Step 2: Open the XMI file in read mode
Step 3: Obtain the object name of the customer
 console from the test designer.
Step 4: Find a message passed from the customer
 console lifeline to system object lifeline.
Step 5: Display the value of the attribute "name" of
 the message as a parameter.
Step 6: End

Step 1: Begin
Step 2: Open the XMI file in read mode
Step 3: Obtain the object name of the customer
 console from the test designer.
Step 4: Find a message passed to the customer console
 lifeline from the system object lifeline.
Step 5: Display the value of the attribute
 "name" of the message as a value.
Step 6: End

Step 1: Begin
Step 2: Open the XMI file in read mode
Step 3: Obtain the object name of the customer
 console from the test designer.
Step 4: Find a message passed from the customer
 console object lifeline to the system lifeline.
Step 5: If found, find just the next sibling message
 node of this message which is passed back to
 the customer console lifeline.
Step 6: If found, display the value of the attributes
 "name" of the messages obtained in step 4 and
 5 as parameters and their values respectively.
Step 7: End.

9091

d) An Illustration of the Approach: Fig.9 shows the
sequence diagram relating to logging into a Library system,
searching for a specific book and getting it issued. In the
diagram, the user object is external to the system providing
inputs to the system and hencs acts as customer console.
Fig.10(a) shows the suggested results obtained from applying
our approach to this sequence diagram. Fig.10(b) shows the
manually interpreted and verified CTDM parameters and
values of Fig.10(a) on manual analysis of Fig.9. In Fig.10(b),
parameter “Issue status” is shown to have a single value
“Issued”. Our observation is that, there may be other values

like “Not issued” coming in through other sequence diagrams

to complete the model. Similar is the case with “Logout

Status” and other parameters.

Fig. 9. Sequence diagram of Library system search transaction

Fig. 10. (a) Suggested automated results and (b) Manually refined and verified
CTDM elements of Fig.9.

3) Argument Passing: Our observation shows that, when
synchronous messages are passed with arguments, it can be
inferred that the arguments are the input parameters and the
reply message forms the output parameter. In the example
shown in Fig.11, quantity and rate are input parameters, reply
message price forms the output parameter.

Fig. 11. Generic component of a sequence diagram with argument passing.

B. Sequence Diagrams with alt Combined Fragment
Alt combined fragment are used to designate a mutually

exclusive option between two or more message sequences
based on a guard condition [10]. Here we discuss two
variations of guard conditions within alt, without relational
operators and with relational operators.

1) Alt with Guard conditions without relational operators:
In conditional fragments, the guards are used to denote the
various conditions depending on which the execution flow
alters. In this case, the guard conditions do not contain any
relational operators as shown in Fig.12.

Fig. 12. Generic component of a sequence diagram showing alt combined
fragment without relational operator.

a) Rule and Algorithm for parameter extraction:
Rule name: Alt_NoRlnOp_param.
Rule Narration: The message immediately preceding an alt
combined fragment is extracted and the value of the attribute
“name” of the message node is displayed as a parameter. The
algorithm for Alt_NoRlnOp_param is shown in Fig.13.

Parameters Login Enter book
name

Request
for issue

Logout

Value 1 Logged in Book found Issued success

Value 2 Wrong
password

Bo not
found

(a)

Parameters Login Enter book
name

Issue
Status

Logout
Status

Value 1 Correct
password

Name of book
found

Issued success

Value 2 Wrong
password

Name of book
not found

Not
Issued

fail

(b)

9192

Fig. 13. Algorithm “Alt_NoRlnOp_param”.

b) Rule and Algorithm for value extraction:
Rule name: Alt_NoRlnOp_value.
Rule Narration: The guard condition of the alt combined
fragment is extracted and displayed as the value.The algorithm
for Alt_NoRlnOp_value is shown in Fig.14.

Fig. 14. Algorithm “Alt_NoRlnOp_value”.

c) Rule and Algorithm for linking the parameters and
their values:
Rule name: Alt_NoRlnOp_LinkPV.
Rule Narration: The message immediately preceding an alt
combined fragment is extracted and the value of the attribute
“name” of the message node is displayed as a parameter. The

guard conditions of this alt combined fragment is obtained and
displayed as the values linked to the parameter.The algorithm
for Alt_NoRlnOp_LinkPV is shown in Fig.15.

Fig. 15. Algorithm “Alt_NoRlnOp_LinkPV”.

d) An Illustration of the Approach: Fig.16(a) shows a
sequence diagram for a Duplicate Filter case study where the
filter information received needs to be determined as
“duplicate” or “not duplicate” before being handled by
subsequent tasks. Fig.16(b) shows the suggested results

obtained on application of alt rule as explained above.
Fig.16(c) shows the suggested results obtained on application
of synchronous message rule. The naming convention the
sequence diagram designer has used with reference to message
1.1 and 1.2 in Fig.16(a) is output and discard respectively. On
manual refinement and combining both the rules we arrive at
Fig.16(d). The manual analysis shows that it is a single
parameter outcome with two values output and discard.

Fig. 16. Duplicate case study (a) Sequence diagram (b) Suggested automated
results on application of Alt rule (c) Suggested automated results on
application of synchronous message rule (d) Manually refined and verified
CTDM elements

Step 1: Begin
Step 2: Open the XMI file in read mode
Step 3: For a combined fragment node, the value of

 the attribute "name" of the message node,
 immediately preceding it is the parameter.
Step 4: End.

Step 1: Begin
Step 2: Open the XMI file in read mode
Step 3: The guard condition is obtained by traversing
 down the combined fragment node to its last-
 level child node from the value of the "value"
 attribute.
Step 4: End.

Step 1: Begin
Step 2: Open the XMI file in read mode
Step 3: For a combined fragment node, the "name"
 attribute's value of the message node
 immediately preceding it is the parameter.
Step 4: The guard condition is obtained from the
 "value" attribute of the last-level child node
 of the combined fragment node considered in
 step 3,which are the required values.
Step 5: End.

(a)

Parameters Filter

Value 1 Not Duplicate

Value 2 Duplicate

(b)

parameters output discard

Value1 output discard

(c)

Parameters Message Type outcome

Value 1 Not Duplicate message output

Value 2 Duplicate message discard

(d)

9293

2) Alt with Guard conditions with relational operators:
In conditional fragments, the guards are used to denote the

various conditions depending on which the execution flow
varies. In this case, the guard conditions have a relational
operator as shown in Fig.17.

Fig. 17. Generic component of a sequence diagram showing alt combined
fragment with relational operator.

a) Rule and Algorithm for parameter extraction:
Rule name: Alt_RlnOp_param.
Rule Narration: The first guard condition of the alt combined
fragment is extracted. The LHS of the guard condition is
displayed as the parameter.
The algorithm for Alt_RlnOp_param is shown in Fig.18.

Fig. 18. Algorithm “Alt_RlnOp_param”.

b) Rule and Algorithm for value extraction:
Rule name:Alt_RlnOp_value
Rule Narration: The guard condition of the alt combined
fragment is extracted and displayed as the value.
Algorithm: The first 3 steps algorithm for value extraction is
similar to the ALT_RlnOp_param algorithm. In essence we
need to repeat the first three steps, and display the value of the
attribute "value" found, as the value.

c) Rule and Algorithm for Linking the parameters and
their values:
Rule name: ALT_RlnOp_LinkPV:
Rule Narration: The guard condition of the alt combined
fragment is obtained. The L.H.S of the first extracted guard
condition is displayed as the parameter while all the guard
conditions are displayed as its linked values.
Algorithm: The first 4 steps algorithm for value extraction is
similar to the RlnOp_param algorithm. In essence we need to
repeat the first four steps, and display the value of the attribute
"value" obtained for all the child nodes of the fragment node,
as the value.

d) An Illustration of the Approach: Fig.20(a) shows an
ATM withdrawal transaction sequence diagram resluting from
the ATM requirements document [29] considered in our
activity paper [26]. Fig.20(b) shows the suggested results of
our approach which is inline with manually derived CTDM in
[26].

C. Sequence Diagrams with opt,break and Loop Combined
Fragment.

We classify the combined fragments opt, break and loop
different from alt combined fragment because in these guard
conditions may or may not exist.

1) Sequence Diagram with opt Combined Fragment: An
opt is used to denote an "if-then" condition in a sequence
diagram. It doesn’t contain any else part and hence denotes an

optional fragment. In essence, given a certain condition, the
sequence occurs, else the sequence does not occur The flow to
the optional fragment is denoted by a guard which is however
not a required element [10].

If the guard condition is present in the frames content area
as shown in Fig.19 ,then it is likely to contribute to the CTDM
elements. The guard condition is interpreted in the same way
as that of alt combined fragment algorithm for extracting the
parameters and values.

Fig. 19. Generic component of a sequence diagram showing opt combined
fragment.

Step 1: Begin
Step 2: Open the XMI file in read mode
Step 3: The guard conditions, obtained from the
 value of the "value" attribute of the combined

 fragment node's last-level child node, are
 obtained.
Step 4: For the combined fragment node's first child,
 display the L.H.S value of this
 attribute "value" until a relational condition is

met, as the parameter.
Step 5 : End.

9394

Fig. 20. ATM withdraw transaction case study (a) Sequence diagram (b) Suggested automated results

2) Sequence Diagrams with Break combined fragment:
Break combined fragment is similar to the break keyword
used in the programming languages. If the guard condition
within the break fragment evaluates to true, the remaining of
the directly enclosing interaction fragment is overlooked. If
the guard condition within the break fragment evaluates to

false, the break operand is overlooked and the rest of the
enclosing interaction fragment proceeds[10]. Again the guard
condition within the break combined fragment as shown in the
Fig.21 contributes to the CTDM elements parameter and value
which can be determined in a similar fashion as that of alt
combined fragment algorithm.

(a)

Parameters Account Amount Balance-amount Funds-amount

Value 1 Savings >10000 Balance-amount>0 Funds-amount<=0

Value 2 Checking <=10000 Balance-amount<=0 Funds-amount>0

 (b)

9495

Fig. 21. Generic component of a sequence diagram showing break combined
fragment.

3) Loop Combined Fragment: Loop fragment is an
iteration operator and is used when there is a need to repeat a
sequence. There are 3 ways to use the loop fragment as shown
in Fig .22.
If guard condition becomes false, the loop terminates
regardless of the minimum number of iterations specified. Our
observation shows that the guard condition contributes to the
identification of CTDM elements as in Fig.22(c).

Fig. 22. Generic component of a sequence diagram showing (a) Infinite loop
(b) loop exact number of times (c) loop with guard condition.

V. CONCLUSION AND FUTURE WORK

This paper presents a rule based approach to extract CTDM
related information from UML 2.0 sequence diagrams. The
UML 2.0, sequence diagram has been augmented with many
new semantic constructs making it more expressive and
powerful. They can be drawn in diverse ways, from an
abstract level to most detailed level. In this paper, we have

come up with a set of rules relating to specific constructs of
the sequence diagram to derive information on parameters,
values of the underlying CTDM. The guard conditions of
various combined fragments and the messages in synchronous
message calls are found to hold the test parameters and values.
The formulated rules are applied independently on individual
sequence diagrams and the results output can be of assistance
to the test designer in building CTDM. Our vision is to
develop an integrated tool that automates the process of
CTDM derivation by analyzing various sources of information
like requirements document, activity diagrams and sequence
diagrams. Derivation of CTDM from activity diagrams is
reported in our earlier work [26]. Currently we have
implemented all the rules discussed in this paper and as an
immediate future work, we would like to design and
implement appropriate rules for synchronous message calls
with arguments, constructs opt, break and loop without guard
as discussed in section IV. In our initial study, we did not find
constraints showing up directly in the sequence diagrams.
However we may have to investigate this further and add
additional rules as required.

ACKNOWLEDGMENT

We would like to sincerely thank Dr. Ramesh Babu D R
our head of the department, for his continuous support and
motivation throughout the pursuit of this research. We would
also like to express our heartfelt gratitude to our students
Ankita, Prateek and Abhinandan for helping us in
implementing our prototype.

REFERENCES

[1] D. M. Cohen, S. R. Dalal, J. Parelius and G. C. Patton, “The
combinatorial design approach to automatic test generation,” IEEE
software, vol. 13, No 5, pp. 83–89, September 1996.

[2] Ashalata Nayak and DebashishSamanta, “Automatic Test Data
Synthesis using UML Sequence Diagrams,” Journal of Object
Technology, Vol. 09, No. 2, pp.75-104, March-April 2010.

[3] Itai Segall, R. Tzoref-Brill, and A. Zlotnick, “Simplified modeling of
combinatorial test spaces,” IEEE 5th International Conference on
Software Testing,Verification and Validation (ICTS) , 2012, pp. 573-
579.

[4] Sergiy A. Vilkomir, Khalid A. Abdelfattah and Sudha Gummadi,
“MIST: Modeling input space for testing tool,” Proceddings of the 13th

IASTED International Conference Software Engineering and
Applications (SEA 2009), Cambridge, MA, USA, 2009, pp. 210–217.

[5] Sergiy A. Vilkomir, W. Thomas Swain and Jesse H. Poore, “Software
input space modeling with constraints among parameters,” 33rd Annual
IEEE International Computer Software and Applications Conference,
Seattle, Washington, USA, 2009, Vol. 1, pp. 136–141.

[6] R. Krishnan, S. M. Krishna and P. S. Nandhan, “Combinatorial testing:
Learnings from our experience,” ACM SIGSOFT Software Engineering
Notes, 2007, vol. 3, pp. 1–8.

[7] P.Samuel and R.Mall, “A novel test case design technique using
dynamic slicing of UML sequence diagrams,” in e-Informatica,
2008,2(1) , pp. 71-92.

[8] M.Grochtmann and K.Grimm., “Classification Trees for Partition
Testing,” Journal of Software Testing, Verification, and Reliability,
3(2):63–82, 1993.

(a) Infinite loop

(b) Loop to execute exactly a times.

(c) The loop executes minimum a times and

maximum b times

9596

[9] Mario Brcic and Damir Kalpic, “Combinatorial testing in software
projects,” MIPRO, 2012 Proceedings of the 35th International
Convention, 2012, pp. 1508–1513.

[10] “UML basics: The sequence diagram.” [online]. Available:
http://www.ibm.com/developerworks/rational/library/3101.html

[11] Itai Segall, R. Tzoref-Brill, and A. Zlotnick, “Commom patterns in
combinatorial models,” IEEE 5th International Conference on Software
Testing,Verification and Validation (ICTS), 2012, pp. 624-629.

[12] Grady Booch, James Rumbaugh and Ivar Jacobson, “The unified
modeling language ,” Reference Manual, Addison Wesley, 2001.

[13] Robert V. Binder, “Testing object-oriented systems: models, patterns
and tools ,” Addison Wesley, 2000.

[14] UML modeling tool [online]. Available: http://www.altova.com/
[15] Emanuela G. Cartaxo, Francisco G. O. Neto and Patr´ıcia D. L.

Machado, “Test Case Generation by means of UML Sequence Diagrams
and Labeled Transition Systems”. Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, SMC 2007, pp. 1292–
1297. IEEE (2007)

[16] Changhai Nie and Hareton Leung, “A survey of combinatorial testing,”
ACM Computing Survey, 2011, vol. 43, No.2.

[17] Mehra N. Borazjany, Linbin Yu, Yu Lie, Raghu Kacker, and Rick Kuhn,
“Combinatorial testing of ACTS: A case study,” IEEE 5th International
Conference on Software Testing, Verification and Validation (ICTS),
2012, pp. 591–600.

[18] D. Richard Kuhn, Raghu N. Kacker, and Yu Lie.(2010,October)
“Practical combinatorial testing” [Online]. Available:

http://csrc.nist.gov/groups/SNS/acts/documents/SP800-142-101006.pdf
[19] XML Metadata Interchange (XMI). [online]. Available:

http://www.omg.org
[20] Mats Grindal and Jeff Offutt, “Input parameter modeling for

combination strategies,” In Proceedings of the 25th Conference on
IASTED International Multi-Conference, vol. 2, pp. 740–741, August
1987 [Digests 9th Annual Conf. Magnetics Japan, p. 301, 1982].

[21] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The
AETG system: An approach to testing based on combinatorial design,”
IEEE Transactions On Software Engineering, vol. 23, No 7, pp. 437–
444, July 1997.

[22] ”UML basics tutorial”. [online]. Available: http://www.uml-
diagrams.org/

[23] “The python tutorial”. [online].

Available: http://docs.python.org/2/tutorial
[24] “Stock Payment example”. [online]. Available:

http://www.codeproject.com/Articles/28445/UML-Interview-Questions-
Part-1

[25] “Duplicate Filter Example.” [online]. Available:
https://www.ibm.com/developerworks/community/blogs/workflowusing
si/?lang=en

[26] Satish P.,Sheeba K. and Rangarajan. K.,"Deriving Combinatorial Test
Design Model from UML Activity Diagram",IEEE 6th International
Conference on Software Testing, Verification and Validation (ICTS),18-
22 March 2013, pp. 331 - 337.

[27] Zoltan Micskei and Helene Waeselynck.,"The many meanings of UML
2 Sequence Diagrams: a survey," Software and Systems Modeling,2011,
10(4), pp. 489–514.

[28] T. J. Ostrand and M. J. Balcer.,"The category-partition method for
specifying and generating functional tests,"Communications of the
ACM,June 1988, 31(6), pp. 676–686.

[29] “ATM simulation example”. [online]. Available:
http://wwwagse.informatik.unikl.de/teaching/gse/ws2012/example/ESEx
ample_Document.pdf.

[30] D. Richard Kuhn, Raghu N. Kacker, Yu Lei," Introduction to
 Combinatorial Testing; CRC Press", 2013, ISBN 978-1-4665-5229-6.
[31] “OMG Formal Specifications”. [online]. Available:
http://www.omg.org/.

[32] “UML Sequence Diagrams: Guidelines”. [online]. Available:
http://msdn.microsoft.com/en-us/library/dd409389.aspx#Simple

9697

