
Splitting and Aggregating Signatures in Cryptocurrency Protocols

S. Sharmila Deva Selvi1, Arinjita Paul1, C. Pandu Rangan1, Siva Dirisala2, and Saswata Basu2

1Department of Computer Science and Engineering, IIT Madras, India

Email: {sharmila,arinjita,prangan}@cse.iitm.ac.in
20chain LLC, San Jose, USA

Email: {siva,saswata}@0chain.net

Abstract—The blockchain technology and a vast amount of
cryptocurrency related activities have generated an unprece-
dented level of interest among the public. However, even at
the entry level, cryptocurrency users need to deal with the
complex task of key management. In this paper, we propose a
simple way to manage a user’s private key, under a reasonable
assumption that the user has two devices at his disposal (say
a laptop and a mobile phone). We refer to our strategy as key
splitting. Since these cryptographic keys are used for generating
digital signatures, we should take a closer look at the signature
schemes that would perform best under key splitting. At the
operational level, scalability is one of the main challenges faced
by the users and developers. While there are fundamental
issues like consensus that challenge scalability, we focus on
the computational efficiency in a block formation. Aggregation
of signatures is one of the effective solutions to this problem. To
this end, we observe that none of the existing signature schemes
work well for BOTH key splitting and aggregation. The current
popular schemes such as the ones used in Bitcoin or Schnorr’s
scheme implemented over Elliptic curves are neither suitable
for aggregation nor can their keys be split in a convenient and
meaningful way. A detailed theoretical and empirical analysis
shows that the BLS short signature scheme is best suited for
achieving both key splitting and aggregation.

Keywords-Blockchain, key management, wallet, signature,
scalability.

I. INTRODUCTION

The real-world as well as the academic studies on cryp-

tocurrencies and the block chain technology are among the

most significant and trendy developments of Information

Technology. Block-chain technology is witnessing an ex-

ponential growth in interest and technical advancement at

this point of time. While these areas are witnessing an

unprecedented growth and attention, their deployments face

major hurdles at several fronts. One of the major concerns

related to this technology is scalability and in general

efficiency/reliability of the whole operation. For instance,

every user in this community, sooner or later, directly or

indirectly, is forced to deal with challenges of maintain-

ing and managing the cryptographic keys that are used.

The subtleties and challenges involved in key generation,

maintenance and management are well known in security

industry and both cryptographic and policy based solutions

have been devised in the past. However, in the context of

cryptocurrencies, we still do not have satisfactory solutions

that would help scalability or ease of use. The second major

concern is related to computational efficiency of the tasks

performed during the execution of the protocols. One of

the most computationally intense and most frequently used

cryptographic primitives in blockchain technology is digital

signatures. The users need to generate every transaction

with appropriate authentication done on the transaction and

the minors or validators need to verify/validate the same

multiple number of times. In this paper, we focus on the

signing process at the users end and verification process at

the block formation/validation end.
In order to handle the challenges and complexities of key

management, a number of techniques were proposed and

deployed in different cryptocurrencies. In Bitcoin core, the

keys are maintained in local storage. A typical user will

have an access to a wallet software of his choice and use

the same to authenticate transactions he is generating. As

wallets generate the digital signature, it requires an access

to the private key of the user. While this speeds up the wallet

operations, the presence of a key for a long time in a system

that is online increases its vulnerability. Off-line storage and

air gapped storages are used by systems such as Armory [1].

Password protected wallets are deployed by certain systems

but they do not provide any security against a malware that

might read the key strokes etc. Third party hosted wallets are

also suggested to remove the pains of key management to

a novice user but then it requires enormous amount of trust

in a third party. A detailed analysis on various techniques

that are currently used in practice together with limitations

in their usability is reported in [7].
In view of the shortcomings of the existing systems, we

take a fresh look at key generation and management using

two systems that may be available with a typical user. Our

proposal is simple, easy to implement, secure and offers

protections against theft/loss of the systems. Given that a

typical user may have at his disposal several devices(atleast

two, say a laptop and a mobile phone/notepad), is it possible

to handle key management with relative ease? Specifically,

we are interested in “splitting the private key” into several

components and store each in a device so that:

1) We have adequate protection even in the case of

100

2019 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPCON)

978-1-7281-1264-0/19/$31.00 ©2019 IEEE
DOI 10.1109/DAPPCON.2019.00021

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on November 25,2021 at 07:35:33 UTC from IEEE Xplore. Restrictions apply.

loss/corruption of a component of a key.

2) Even in the case of loss/theft of the device and

subsequent abuse of the key component available in

the device.

3) Signature generation must involve all the split compo-

nents.

4) The individual components of the signatures generated

in each device is secure on its own and does not lead

to any attacks and key exposure.

We note that the (BLS) short signature scheme of Boneh,

Lynn and Shacham [6] is quite amenable for such split-

ups and we describe a way in which an effective split-up

be achieved. Also, such split-up is not possible in Schnorr

signature [12] or Elliptic Curve Digital Signature Algo-

rithm (ECDSA) [9] without sharing information between the

two devices that generate the partial signatures.

The transaction generation as well as the block for-

mation/validation involve running computationally intense

signing and verification algorithms. Typically, the block size

is kept small by design in order to speed up the communi-

cation and in small blocks, it is observed that signatures

occupy a significant amount of space. For example, it is

estimated that nearly 40% of the transcript space is occupied

by signatures in case of bitcoin [14]. The computations

involved in some of the deployed signature schemes are

found to be very complex. For instance, the most widely

used ECDSA combines the long term and short term keys

in a non linear fashion and that directly contributes to

its inefficiency [14]. Moreover, each block formation calls

for verification of a number of signatures (the signatures

found in the transactions chosen for pooling) and when

the block is broadcast, again the validation process calls

for huge number of signature verifications at every node of

the network. In this context, aggregate verification offers an

efficient solution. In signature aggregation/verification, we

combine several signatures into one “super” signature and

carry out the verification only on the super signature rather

than on the individual signature. Thus we see a dramatic

drop in the verification cost of n signatures to the cost

of verifying one signature. This clearly saves space and a

significant amount of computing time. While the aggregation

is a neat idea leading to efficiency, it is unfortunate that

not all signature schemes are suitable for aggregation. For

some schemes, aggregation may not reduce the cost at all

and the verification cost may remain the same without any

reductions. The Schnorr or the ECDSA signature does not

offer any natural way to aggregate due to the independent

randomness deployed in different signatures on different

messages. In fact, it is shown that any attempt to aggregate

may even lead to serious attack as shown in [14]. In view

of this fact, fresh attempts are made to create aggregatable

signatures and the Gamma Γ- signature scheme in [14] is the

most recent one. However, the keys of this scheme cannot

BLS Keys Device 1 Device 2
Private Key: x ∈ Z∗

q
Public key: X = xP
σ = xH(m)

Accept mnemonic1
x1 = H1(mnemonic1)
x2 = x− x1
Store x1 and x2P
Send x2 to device 2

Accept Passcode
s1 = x2 −H1(Passcode)
y = H2(x2, Passcode)
Store s1, y

Table I: Our Key-Split algorithm

Device 2 Device 1
Accept Passcode
x2 = s1 +H1(Passcode)
y′ = H2(x2, Passcode)

Check if y′ ?
= y

σ2 = x2H(m)
Send σ2 to device 1

Check if ê(σ2, P)
?
= ê(H(m), x2P)

σ = x1H(m) + σ2 = x1H(m) + x2H(m)
= xH(m)

Output σ as the signature for m

Table II: Signing Workflow

be split in any convenient way. Moreover, empirical analysis

shown in Table IV shows that BLS signature is far more

efficient than the Γ-signature scheme.

Thus we show that BLS scheme can be tinkered to

accommodate key splitting at the users end and can be

aggregated for verification at the block generation end. We

have presented the details of signature scheme based on key

splitting and aggregate verification. We have also carried out

performance analysis and compared the running times of our

approach with that of the Schnorr, ECDSA and Γ-signature

schemes.

II. DEFINITION

In this section, we describe the syntactical definition of a

signature scheme that provides key split-up and aggregation.

A. Signature Scheme with Key Split-up

A signature scheme with key split-up consists of the

following algorithms:

• Setup(λ): On input of a security parameter λ, this

algorithm generates the public parameters Params.

• KeyGen(Params): On input of the public parameters

Params, this algorithm generates a public-private key

pair (PK,SK) for a user.

• Key-split(SK,Params): On input of a private key

SK and public parameters Params, this algorithm

generates two partial private keys SK1 and SK2 for

device 1 and device 2 respectively. This algorithm is

run by the user.

• Sign-1(m,SK1, Params): On input of a message m
and the partial private key SK1, this algorithm outputs

the partial signature σ1. This algorithm is run on device

1.

101

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on November 25,2021 at 07:35:33 UTC from IEEE Xplore. Restrictions apply.

• Sign-2(m,SK2, Params): On input of a message m
and the partial private key SK2, this algorithm outputs

the partial signature σ2. This algorithm is run on device

2.

• Sign-Combine(σ1, σ2, Params): On input of the par-

tial signatures σ1 and σ2 and the public parameters

Params, this algorithm combines the signatures and

outputs a compressed short signature σ. This algorithm

is run on device 1.

• Verify(m,σ, PK,Params): On input of an aggregated

signature σ, a public key PK and the public param-

eters, the algorithm returns “VALID” if σ is a valid

signature on message m and public key PK. Else, it

will output “INVALID”.

B. Aggregate Signature Scheme with Key Split-up

An aggregate signature scheme with key split-up consists

of the following algorithms along with the Setup(), Key-
Gen(), Key-Split(), Sign-1(), Sign-2(), Verify() algorithms

shown in Section II-A to enable signature aggregation.

• Aggregate-Sign(Σ={(mi, σi, PKi)}i=1 to n, Params):
On input of message mi, public key PKi and signature

σi of n different users and the public parameters

Params, this algorithm generates and outputs the

aggregate signature δ. This algorithm can be run by

any user who possess Σ.

• Aggregate-Verify(δ, {mi, PKi}i=1 to n, Params):
On input of an aggregate signature δ, the message,

public key pair (mi, PKi) of n different users and

the public parameters Params, the algorithm returns

“VALID” if δ is a valid aggregate signature on

message-key pairs {mi, PKi}i=1 to n. Else, it will

output “INVALID”.

III. SECURITY MODEL

A. Security Model for Signature with Key Split-up

The security model for signature schemes with key split-

up is same as that of the traditional signature schemes, by

replacing the sign oracle modified into Sign-1 and Sign-

2. The challenger C provides the forger F with a public

key PKT . The forger F can ask one of the partial private

keys corresponding to PKT of its choice. A signature

scheme with key split-up is secure against existential forgery

under the adaptive chosen message attack, if no probabilistic

polynomial time algorithm F has a non-negligible advantage

in the following game:

• Setup Phase: The challenger C generates the public

parameters and sends it to the forger F . The challenger

C also provides the forger F with a public key PKT .

F now decides to request one part of the private key

of its choice.

• Training Phase: The forger F adaptively queries

partial signatures on public key PKT with various

messages of his choice.

• Forgery Phase: Finally, F produces a valid message,

signature pair (mT , σT) signed under public key PKT

on a message mT .

B. Security Model for Aggregate Signature with Key Split-up
Our game based definition of the security of aggregate

signature schemes with key split is an adaption of the

aggregate chosen-key security model by Boneh et al. [5].

In this model, the challenger C provides the aggregated

forger F with a single public key PKT and gives F the

power to select all public keys except the challenger public

key PKT . An aggregate signature scheme with key split-

up is secure against existential forgery under the adaptive

chosen message attack, if no probabilistic polynomial time

algorithm F has a non-negligible advantage in the following

game:

• Setup Phase: The challenger C generates the public

parameters and sends it to the aggregated forger F . The

challenger C also provides the forger F with a public

key PKT and access to one of the partial private key

corresponding to SKT of F ′s choice.

• Training Phase: The forger F adaptively queries for

signatures and partial signatures on public key PKT

with various messages of his choice.

• Forgery Phase: Finally, F outputs n = k+1 additional

public keys PK1, PK2, · · · , PKn−1, PKT , messages

m1,m2, · · ·mn−1,mT and an aggregated signature δ
signed under public keys PK1, PK2, · · · , PKk, PKT

on the messages m1,m2, · · ·mk,mT respectively. Here

it should be noted that F has generated all the public

keys PK1, PK2, · · · , PKk except PKT and the chal-

lenger C does not know the private key corresponding

to PK1, PK2, · · · , PKk.

The forger F wins the game if the aggregate signa-

ture δ is a valid aggregate of the signatures on the

messages m1,m2, · · ·mk,mT signed under public keys

PK1, PK2, · · · , PKk, PKT respectively, such that the sig-

nature on message mT under PKT (i.e. both Sign-

1(mT , PKT) and Sign-2(mT , PKT)) has not been queried

upon by F .

Definition 1. An aggregate forger F(t, qH , qs, ε) breaks an
aggregate signature scheme with key split-up if F runs in
time atmost t, making qH hash queries, qS signing queries
and his advantage AdvAggSigA is atleast ε. An aggregate
signature scheme with key split-up is (t, qH , qs, ε)−secure
against existential forgery in the aggregate chosen key model
if no (t, qH , qs, ε) forger breaks it.

IV. SHORT SIGNATURE USING BILINEAR PAIRING

The Boneh-Lynn-Shacham(BLS) signature scheme [6] is

a signature scheme based on bilinear pairing of an elliptic

curve group. Signatures produced by the BLS signature

scheme are short signatures. The signature scheme is prov-

ably secure (the scheme is existentially unforgeable under

102

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on November 25,2021 at 07:35:33 UTC from IEEE Xplore. Restrictions apply.

adaptive chosen-message attacks) assuming both the exis-

tence of random oracles and the intractability of the com-

putational Diffie-Hellman problem in a gap Diffie-Hellman

group.

The BLS signature scheme consists of the algorithms,

Setup(), KeyGen(), Sign() and Verify().

BLS Scheme:

• Setup(κ) :On input of the security parameter κ this

algorithm will perform the following,

– Choose a large prime q.

– Choose two cyclic groups G and GT of order q,

where G is additive group and GT is a multiplica-

tive group.

– Choose the generator P ∈ G.

– Define the bilinear pairing ê : G×G→ GT .

– Define cryptographic hash function H : {0, 1}lm
→ G, where lm is the size of the message.

– Output the system parameters Params =

〈q, P, H, ê〉.
• KeyGen(Params)This protocol is run by the user.

This will output the public and private key of the user.

– Choose x ∈ Zq
∗.

– Set X = xP ∈ G.

– Output public key PK = 〈X〉 and private key SK
= 〈x〉.

• Sign(m,SK,Params): This protocol is run by user

in the mobile. On input of message m and private key

x, this will output the signature σ computed as shown

below:

– Compute σ= xH(m,PK) ∈ G.

– Output σ.

• Verify(m,σ, PK,Params): This protocol can be run

by any user who possess the message m, signature σ
on message m and public key PK, this algorithm will

perform the following:

– Compute H = H(m,PK) ∈ G.

– If ê(H,X)
?
= ê(σ, P) then output VALID, else

output INVALID.

A. BLS Scheme with key split-up for secure wallet:

• Setup(κ) :On input of the security parameter κ this

algorithm will perform the following.

– Choose a large prime q.
– Choose two cyclic groups G and GT of order q,

where G is additive group and GT is a multiplica-

tive group.

– Choose the generator P ∈ G.

– Define the bilinear pairing ê : G×G→ GT

– Define cryptographic hash function H : {0, 1}lm
× G → G, where lm is the size of the message.

– Output the system parameters Params =

〈q, P, H, ê〉.

• KeyGen(Params)This protocol is run by the user.

This will output the public and private key of the user.

– Choose x ∈ Zq
∗.

– Set X = xP ∈ G.

– Output public key PK = 〈X〉 and private key SK
= 〈x〉.

• Key-Split(SK,Params): This protocol is run by the

user. On input of private key x, this algorithm will out-

put the two private keys SK1 and SK2 corresponding

to private key SK.

– Choose x1 ∈ Zq
∗

– Set x2 = (x− x1) ∈ Zq
∗

– Output private key pair SK2 = x2 and private

key SK1 = x1. Here SK1 is the private key

corresponding to device 1 and SK2 is the private

key for device 2.

• Sign-1(m,SK1, Params): This protocol is run by user

in the device 1. On input of message m and private key

x1, this will output the signature σ1 computed as below:

– Compute σ1= x1H(m,PK) ∈ G.

– Output σ1.

• Sign-2(m,SK2, Params): This protocol is run by user

in the device 2. On input of message m and private

key x2, this algorithm will output the signature σ2

computed as below:

– Compute σ2 = x2H(m,PK) ∈ G.

– Output σ2.

• Sign-Combine(σ1, σ2, Params): This protocol is run

by user on device 1 with the partial signature σ1 of

device 1, partial signature σ2 from device 2 and public

parameters Params as inputs and outputs the signature

σ on message m by the private key SK corresponding

to the public key PK.

– Output σ = σ1 + σ2 = x1H(m,PK) +

x2H(m,PK) = xH(m,PK).

• Verify(m,σ, PK,Params): This protocol can be run

by any user who possess the message m, a signature

σ of the message m and the public key PK. This

algorithm will perform the verification as following:

– Compute H = H(m,PK) ∈ G.

– If ê(H,X)
?
= ê(σ, P) then output VALID, else

output INVALID.

B. BLS Scheme with key split-up and aggregation
The aggregation mechanism is helpful during the ver-

ification of n signatures generated by n different users

on n different messages m1,m2, · · · ,mn. The algorithms

Setup(), KeyGen(), Key-Split(), Sign-1(), Sign-2(), Ver-
ify() are same as that of the scheme given in Section IV-A. It

has two more algorithms for generating aggregate signatures

and verification of aggregate signatures, i.e., Aggregate-
Sign() and Aggregate-Verify() respectively. The description

of both the algorithms is given below:

103

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on November 25,2021 at 07:35:33 UTC from IEEE Xplore. Restrictions apply.

• Aggregate-Sign(Σ={(mi, σi, PKi)}i=1 to n, Params):
This protocol is run by an user who has all the

signatures in Σ as input and outputs the aggregate

signature δ on message mi by the private key SKi

corresponding to the public key PKi, for i = 1 to n.

– If Verify(mi, σi, PKi, Params) is VALID for

all signatures σi in Σ then output:

δ =
n∑

i=1

σi.

– Else, Output ⊥.

• Aggregate-Verify(δ, {mi, PKi}i=1 to n, Params):
This protocol can be run by any user who possess

the messages mi, public keys PKi, and an aggregate

signature δ. This algorithm will perform the signature

verification as follows:

– For (i = 1 to n), compute Hi = H(mi, PKi) ∈
G.

– If
n∏

i=1

ê(Hi, Xi)
?
= ê(δ, P) then output VALID,

else output INVALID.

V. SECURITY PROOF

A. Security Proof of our Signature Scheme with Key Split-up

In this section we formally prove the security of the

signature scheme with key split-up against existential forgery

under adaptive chosen-message attack in the random ora-

cle model. We formally show that our scheme is secure

and its security follows from the Computational Diffie-

Hellman (CDH) assumption in (G,GT).

Definition 2. Computational Diffie-Hellman (CDH) as-
sumption: The Computational Diffie-Hellman (CDH) as-
sumption in G is, given a tuple of elements (P, aP, bP) ∈ G,
where a,b ∈R Z

∗
q , there exists no polynomial time adversary

which can compute abP in G, with a non-negligible advan-
tage.

Theorem 1. Let (G,GT) be a (t′, ε′)-CDH group of or-
der p. Then our signature scheme is (t, qs1 , qs2 , qH1 , ε)-
secure against existential forgery under the adaptive chosen-
message attack in the random oracle model, for all t and ε
that satisfies,

ε′ ≥ ε

e(1 + qs2)
, and

t′ ≤ t+ (qH1 + qs1 + qs2 +O(1))
Proof: Suppose F is a forger algorithm that

(t, qs1 , qs2 , qH1 , ε)-breaks our signature scheme on (G,GT)
in time t. Then, we show how to construct a t′-time

algorithm C that solves the CDH problem on (G,GT) with

probability atleast ε′. The existence of such polynomial time

solver for CDH problem is not possible, hence the existence

of polynomial time attacker for the signature scheme is also

not possible

Let P be the generator of G. Algorithm C is provided

with the challenge instance (P, aP, bP) ∈ G whose goal is

to generate abP ∈ G. Forger F interacts with the challenger

C and the challenger will answer all the queries asked by

the Forger in the following way :

• Setup Phase : Challenger C starts by giving F the

common reference string (P,G,GT) and the public key

PKT = 〈XT = (s1+ s2a)P)〉, where s1, s2 is chosen

at random from Z
∗
q . The corresponding private key

xT = s1 + s2a, which is not known to the challenger.

Now, F will request C the partial key SK1 or SK2

which F wishes to compromise . If he decides to get

access to partial private key SK1 then x1 = s1 and

x2 = as2. If F decides to get access to partial private

key SK2 then x1 = as2 and x2 = s1. Note that C does

not know the value of either x1 or x2. For simplicity

we assume that F decides to compromise partial private

key x1.

• Training Phase : During this phase, F is given access

to the following oracles provided by the challenger C:

– H query: C handles the hash queries of the forger

F by maintaining a list LH consisting of tuples

defined as 〈m,PK, c, h,Hm〉. Initially the list is

empty and is updated as explained below. When F
queries the oracle H with a message m ∈ {0, 1}lm
and public key PK as input, C responds in the

following way:

∗ If a tuple 〈m,PK, c, h,Hm〉 already exists in

the LH list, then C responds with H(m,PK) =
Hm ∈ G.

∗ Otherwise, C picks a random h ∈ Z
∗
q and flips

a coin c ∈ {0, 1} such that Pr[c = 0] = γ
(defined later) and sets Hm = hbP if c = 1.

Else, it sets Hm = hP . Also, C stores the tuple

〈m,PK, c, h,Hm〉 in LH list and output Hm.

– Sign-1 query: When a signature query is generated

for device 1, C does the following:

1) C queries H(m,PK) to obtain Hm.

2) C computes σ1 = x1Hm.

3) C sends σ1 as the signature to A.

– Sign-2 query: When a signature query is generated

for device 2, C does the following:

1) C checks whether (m,PK) is already present

LH list. If (m,PK) belongs to LH list, then:

∗ C retrieves the tuple 〈m,PK, c, h,Hm〉
from LH list.

∗ If c = 0, sets σ2 = s2haP=as2Hm =x2Hm.

∗ Else, Aborts.

2) If (m,PK) does not belong to LH list, then:

∗ C picks a random h ∈ Zq
∗

∗ C sets Hm = hP and c = 0.

∗ Also, C stores 〈m,PK, c, h,Hm〉 in LH

list.

104

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on November 25,2021 at 07:35:33 UTC from IEEE Xplore. Restrictions apply.

∗ C computes σ2= s2haP=(as2)hP=as2Hm

=x2Hm.

3) C sends σ2 as the signature to F .

• Forgery Phase : On getting sufficient training, algo-

rithm F produces a message-signature pair (m∗, σ∗)
such that σ∗ is not obtained by querying the signing

oracle for a message m∗ and σ∗ is valid. Now, C
computes the solution to the hard problem as shown

below.

– C checks LH for a tuple 〈m∗, PK, c, h,Hm∗〉 .

– C computes T = (hs2)
−1(σ∗ − hs1P). This

correctly generates the solution to the hard

problem T = abP as below.

T = (hs2)
−1(σ∗ − hs1P)

= (hs2)
−1(x(hP)− hs1P)

= (hs2)
−1((s1 + s2a)hP − hs1P)

= (hs2)
−1(s1hP + s2abhP − hs1P)

= (hs2)
−1(s2abhP)

= abP

= LHS.

Thus, no forgery is possible by F in polynomial time

with a non-negligible advantage.

• Probability Analysis: We calculate the probability

with which C aborts during the simulation. Let Abort
denote the event that C aborts during the game and qs2
denote the number of queries made to the Sign-2 oracle.

We note that C does not abort in the following events:

− E1: c = 0 in a Sign-2 query of Training phase.

− E1: c∗ = 1 in the Forgery phase.

We have Pr[¬Abort] ≥ γqs2 (1 − γ), which has a

maximum value at γOPT =
qs2

1+qs2
. Using γOPT , we

obtain:

Pr[¬Abort] ≥ 1
e(1+qs2)

,

where, e is the base of the natural logarithm. Note

that the simulation of the random oracles is perfect.

Therefore, C solves the CDH problem in (G,GT) with

probability:

ε′ ≥ ε

e(1 + qs2)
.

Note that C solves the hard problem after the forger F
makes qH queries to the H oracle, qs1 queries to the

Sign-1 oracle, qs2 queries to the Sign-2 oracle and

generates a forged signature. Also, given the forged

signature, the challenger extracts the solution to the

CDH problem with O(1) computation. Therefore the

total time t′ taken by C in solving the hard problem is

as below:

t′ ≤ t+ (qH + qs1 + qs2 +O(1))

If t is a polynomial, it would imply that t′ is also

a polynomial which contradicts the assumption that

(G,GT) is a CDH group pair. This completes the proof

of the theorem.

B. Security Proof of our Aggregate Signature Scheme with
Key Split-up

In this section we formally prove the security of the

signature scheme with key split-up against existential forgery

under adaptive chosen-message attack in the random oracle

model. We formally show that our scheme is secure and its

security follows from the CDH assumption in (G,GT).

Theorem 2. Let (G,GT) be a (t′, ε′)-CDH group of or-
der p. Then our signature scheme is (t, qs1 , qs2 , qH1 , ε)-
secure against existential forgery under the adaptive chosen-
message attack in the random oracle model, for all t and ε
that satisfies,

ε′ ≥ ε

e(1 + qs2)
, and

t′ ≤ t+ (qH1 + qs1 + qs2 +O(1))
Proof: Suppose F is a forger algorithm that

(t, qs1 , qs2 , qH1 , ε)-breaks our signature scheme on (G,GT)
in time t. Then, we show how to construct a t′-time

algorithm C that solves the CDH problem on (G,GT) with

probability atleast ε′. The existence of such polynomial time

solver for CDH problem is not possible, hence the existence

of polynomial time attacker for the signature scheme is also

not possible

Let P be the generator of G. Algorithm C is provided

with the challenge instance (P, aP, bP) ∈ G whose goal is

to generate abP ∈ G. Forger F interacts with the challenger

C and the challenger will answer all the queries asked by

the Forger in the following way :

• Setup Phase:This phase is similar to the Setup Phase
in V-A.

• Training Phase : During this phase, F is given access

to the following oracles provided by the challenger C:

– H query: C handles the hash queries of the forger

F by maintaining a list LH consisting of tuples

defined as 〈m,PK, c, h,Hm〉. Initially the list is

empty and is updated as explained below. When F
queries the oracle H with a message m ∈ {0, 1}lm
and public key PK as input, C responds in the

following way:

∗ If (PK
= PKT):

· If a tuple 〈m,PK, c, h,Hm〉 already ex-

ists in the LH list, then C responds with

H(m,PK) = Hm ∈ G.

· C picks a random h ∈ Z
∗
q sets Hm = hP ,

Also, C stores the tuple 〈m,PK,−, h,Hm〉
in LH list and output Hm.

105

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on November 25,2021 at 07:35:33 UTC from IEEE Xplore. Restrictions apply.

∗ If (PK = PKT):

· If a tuple 〈m,PK, c, h,Hm〉 already ex-

ists in the LH list, then C responds with

H(m,PK) = Hm ∈ G.

· Otherwise, C picks a random h ∈ Z
∗
q and flips

a coin c ∈ {0, 1} such that Pr[c = 0] = γ
(defined later) and sets Hm = hbP if c =
1, Else, it sets Hm = hP . Also, C stores

the tuple 〈m,PK, c, h,Hm〉 in LH list and

outputs Hm.

– Sign-1 query: When a Sign-1 is requested by F ,

C does the following:

1) C queries H(m,PK) to obtain Hm.

2) C computes σ1 = x1Hm.

3) C sends σ1 as the signature to A.

– Sign-2 query: When a Sign-2 is requested by F ,

the challenger C does the following:

1) C checks whether (m,PK) is already present

LH list. If (m,PK) belongs to LH list, then

∗ C retrieves the tuple 〈m,PK, c, h,Hm〉
from LH list.

∗ If c = 0, sets σ2= s2haP=as2Hm =x2Hm.

∗ Else aborts.

2) If (m,PK) does not belong to LH list, then

∗ C picks a random h ∈ Zq
∗

∗ C sets Hm = hP and c = 0.

∗ Also, C stores 〈m,PK, c, h,Hm〉 in LH

list.

∗ C computes σ2= s2haP=(as2)hP=as2Hm

=x2Hm.

3) C sends σ2 as the signature to F .

• Forgery Phase: On getting sufficient training, algo-

rithm F produces a n message-public pair {(mi, PKi),
(mT , PKT)}i=1 to k, where (n=k+1) and a valid aggre-

gate signature δ such that mT , PKT is not queried to

both Sign-1 and Sign-2 oracle. Now, C computes the

solution to the hard problem as shown below.

– For all i=1 to k, C checks and retrieves hi from

the entry 〈mi, PKi,−, hi, Hmi
〉 in LH list.

– C retrieves h corresponding to

〈mT , PKT , c, h,HmT
〉 in LH list.

– Computes T = (hs2)
−1(δ−

k∑
i=1

(hiPKi)−hs1P).

This correctly generates the solution to the hard

problem T = abP as below.

T =(hs2)
−1(δ −

k∑

i=1

(hiPKi)− hs1P)

=(hs2)
−1(

n∑

j=1

(xjHj)−
k∑

i=1

(hiXi)− hs1P)

=(hs2)
−1(

k∑

j=1

(xjHj) + xTHT

−
k∑

i=1

(xiHi)− hs1P)

=(hs2)
−1(xTHT − hs1P)

=(hs2)
−1((s1 + s2ab)hP − hs1P)

=(hs2)
−1(s1hP + s2abhP − hs1P)

=(hs2)
−1(s2abhP)

=abP

=LHS.

Thus, no forgery is possible by F in polynomial time

with a non-negligible advantage.

• Probability Analysis: We calculate the probability

with which C aborts during the simulation. Let Abort
denote the event that C aborts during the game and

qs2 denote the number of queries made to the Sign-2
oracle. We note that C does not abort in the following

events:

− E1: c = 0 in a Sign-2 query of Training phase.

− E1: c∗ = 1 in the Forgery phase.

We have Pr[¬Abort] ≥ γqs2 (1 − γ), which has a

maximum value at γOPT =
qs2

1+qs2
. Using γOPT , we

obtain:

Pr[¬Abort] ≥ 1
e(1+qs2)

,

where e is the base of the natural logarithm. Note

that the simulation of the random oracles is perfect.

Therefore, C solves the CDH problem in (G,GT) with

probability:

ε′ ≥ ε

e(1 + qs2)
.

Note that C solves the hard problem after the forger F
makes qH queries to the H oracle, qs1 queries to the

Sign-1 oracle, qs2 queries to the Sign-2 oracle and

generates a forged signature. Also, given the forged

signature, the challenger extracts the solution to the

CDH problem with O(1) computation. Therefore the

total time t taken by C in solving the hard problem is

as below:

t′ ≤ t+ (qH + qs1 + qs2 +O(1))
If t′ is a polynomial, it would imply that t is also

a polynomial which contradicts the assumption that

(G,GT) is a CDH group pair. This completes the proof

of the theorem.

VI. REMARK ON MULTI-SIGNATURES

Multi-signatures [4] is a special case of signature ag-

gregation where the message to be signed is same for all

106

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on November 25,2021 at 07:35:33 UTC from IEEE Xplore. Restrictions apply.

the parties involved in the signature generation process.

Typically this calls for a coordinated way of generating the

multi-signature and this is in contrast to the signatures in the

transactions which are independently generated. While the

BLS scheme works well for general aggregation, it suffers

from a subtle flaw when used for aggregation or multi-

signature in block-chain as pointed out in [8]. However, there

is an easy fix by including the public key of the signer along

with the message to be signed. This fix is also suggested in

[8].

VII. COMPARISON OF SCHNORR, ECDSA, Γ−
SIGNATURES AND BLS BASED APPROACHES

Based on the proposed protocol, we present the computa-

tional complexity and storage complexity for the generation

and verification of a single signature and n signatures for

Schnorr, ECDSA, Γ− signatures and our approach in Table

III. Note that, both Schnorr and ECDSA signature schemes

do not allow key-aggregation nor key-split. Our signature

scheme requires only one pairing operation for verifying an

aggregate signature, which is more efficient than the Schnorr,

ECDSA and Γ− signatures, where the time taken increases

with the number of signatures combined.

In Table IV, we provide the time taken (in microsec-

onds (μs), milliseconds (ms) and seconds (s)) for the ag-

gregation, verification of n signatures and also the time

for verification of an n-signatures aggregation for values

n = 1, 100, 300, 400, 500 and 1000 signatures. The different

implementations on performance are tested under 2.4 GHz

Intel Core i7 quad-core processor. The programming lan-

guage used is Go language [2], and the programming tool

is Goland 2018.2. For symmetric bilinear pairing operation,

we have used the MCL Library in the implementation of our

signature protocol, which is a portable and fast pairing-based

cryptography library that supports optimal Ate pairing over

BN curves and BLS12-381 curves [13]. The Schnorr signa-

ture is implemented on the edwards25519-curve [3], which

is the current standard deployed in cryptocurrencies [10]

for fast performances. We have implemented the ECDSA

signature scheme on the Koblitz curve secp256k1 [11] over

Fq as defined in FIPS 186-3 [9]. The Γ− signature is also

constructed on the secp256k1 curve as per the protocol [14].

Note that both the Schnorr and ECDSA scheme does not

support aggregation. From the performance comparison, it

is evident that our scheme is more efficient than the existing

aggregatable Γ− signature scheme, and also provides the

added functionality of key split-up.

VIII. CONCLUSION

In this paper, we propose a simple key management

scheme, called key split-up and showed that it is easy to

realize that in BLS signature scheme. We also noted that

both Schnorr and ECDSA does not allow any natural way

to split their keys. Since it is known that aggregation is not

possible/desirable for Schnorr or ECDSA, we have chosen

the aggregatable Γ− signature scheme that is the most

recent. Even in this case, we note that BLS is more efficient

than the Γ signature protocol.

Acknowledgment.: The authors would like to thank Dr.

Rupesh Nasre for providing access to multi-core processors

to conduct experimental studies as a part of this work.

REFERENCES

[1] Armory. Armory Secure Wallet.
https://www.bitcoinarmory.com/, 2016.

[2] Daniel J. Bernstein. The go programming language.
https://golang.org/.

[3] Daniel J. Bernstein. Curve25519: New diffie-hellman speed
records. In Public Key Cryptography - PKC 2006, 9th
International Conference on Theory and Practice of Public-
Key Cryptography, New York, NY, USA, April 24-26, 2006,
Proceedings, pages 207–228, 2006.

[4] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact
multi-signatures for smaller blockchains. In Advances in
Cryptology - ASIACRYPT 2018 - 24th International Con-
ference on the Theory and Application of Cryptology and
Information Security, Brisbane, QLD, Australia, December
2-6, 2018, Proceedings, Part II, pages 435–464, 2018.

[5] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham.
Aggregate and verifiably encrypted signatures from bilinear
maps. In Advances in Cryptology - EUROCRYPT 2003,
International Conference on the Theory and Applications of
Cryptographic Techniques, Warsaw, Poland, May 4-8, 2003,
Proceedings, pages 416–432, 2003.

[6] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures
from the weil pairing. In Advances in Cryptology - ASI-
ACRYPT 2001, 7th International Conference on the Theory
and Application of Cryptology and Information Security, Gold
Coast, Australia, December 9-13, 2001, Proceedings, pages
514–532, 2001.

[7] Shayan Eskandari, Jeremy Clark, David Barrera, and Eliz-
abeth Stobert. A first look at the usability of bitcoin key
management. CoRR, abs/1802.04351, 2015.

[8] Sergey Gorbunov. How not to use aggregate signatures in
your blockchain. https:medium.com/@sergey nog
/how-not-to-use-aggregate-signatures -in-your-blockchain -
63e05be2cbbe.

[9] G Locke and P Gallagher. Fips pub 186-3: Digital signature
standard (dss). Federal Information Processing Standards
Publication, 3:186–3, 2009.

[10] Hartwig Mayer. Ecdsa security in bitcoin and ethereum: a
research survey. CoinFaabrik, June, 28, 2016.

[11] C. Research. SEC 2: Recommended Elliptic Curve Domain
Parameters 2010. http://www.secg.org/sec2-v2.pdf, 2010.

[12] Claus-Peter Schnorr. Efficient signature generation by smart
cards. J. Cryptology, 4(3):161–174, 1991.

107

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on November 25,2021 at 07:35:33 UTC from IEEE Xplore. Restrictions apply.

Feature Schnorr [12] ECDSA Γ−Signature [14] Our Approach
Size of 1 signature |Zq |+ |G| 2|Zq | 2|Zq | |G|
Size of n signatures(aggregated) |Zq |+ n|G| (2n)|Zq | (n+ 1)|Zq | |G|
Complexity of 1 signature Generation RA RA RA 2RA+ PA
Complexity of n signature Generation (n)RA (n)RA (n)RA (2n)RA+ nPA
Complexity of 1 verification 2RA+ PA 2RA 2RA+ PA 2 Pairing
Complexity of n verification (n+ 1)RA+ nPA (2n) RA +PA (2n+1) RA+(n+1)PA (n+ 1) Pairing
Size of Public Key |G| |G| |G| |G|

Table III: The Efficiency comparisons of Schnorr,ECDSA, Γ− Signatures and our Signature scheme based on BLS.

Abbreviations: RA- Repeated Point Addition, PA- Point Addition

Schnorr Signature Aggregation Cost Verification Cost Aggregation + Verification Cost
1 Signature Not Possible 418.9 μs -

100 Signatures Not Possible 42.55 ms -
300 Signatures Not Possible 125.3 ms -
400 Signatures Not Possible 165.31 ms -
500 Signatures Not Possible 204.83 ms -

1000 Signatures Not Possible 411.36 ms -

ECDSA Signature Aggregation Cost Verification Cost Aggregation + Verification Cost
1 Signature Not Possible 280.1 μs -

100 Signatures Not Possible 22.65 ms -
300 Signatures Not Possible 60.3 ms -
400 Signatures Not Possible 86.17 ms -
500 Signatures Not Possible 104.32 ms -

1000 Signatures Not Possible 211.62 ms -

Γ− Signature Aggregation Cost Verification Cost Aggregation + Verification Cost
1 Signature - 25.57 ms 25.57 ms

100 Signatures 2.59 s 2.61 s 5.2 ms
300 Signatures 7.58 s 7.62 s 15.2 s
400 Signatures 10.19 s 10.24 s 20.43 s
500 Signatures 12.81 s 12.97 s 25.78 s

1000 Signatures 27.6 s 27.67 s 55.3 s

Our Scheme Aggregation Cost Verification Cost Aggregation + Verification Cost
1 Signature - 1.12 ms 1.12 ms

100 Signatures 50.35 ms 1.10 ms 51.45 ms
300 Signatures 153.91 ms 1.12 ms 155.03 ms
400 Signatures 206.55 ms 1.17 ms 207.72 ms
500 Signatures 256.52 ms 1.13 ms 257.65 ms

1000 Signatures 504.96 ms 1.88 ms 506.84 ms

Table IV: Performance Evaluation of our Signature scheme, Schnorr Signature scheme, ECDSA scheme and Γ-signature scheme for
aggregation and verification cost. Note that Schnorr and ECDSA do not support aggregation.

[13] Mitsunari Shigeo. Mcl-a portable and fast pairing-based
cryptography library. https://github.com/herumi/mcl.

[14] Yunlei Zhao. Aggregation of gamma-signatures and applica-
tions to bitcoin. Cryptology ePrint Archive, Report 2018/414,
2018. https://eprint.iacr.org/2018/414.

108

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on November 25,2021 at 07:35:33 UTC from IEEE Xplore. Restrictions apply.

