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Abstract. Attribute-based proxy re-encryption (ABPRE) allows a
semi-trusted proxy to transform an encryption under an access-policy
into an encryption under a new access policy, without revealing any
information about the underlying message. Such a primitive facilitates
fine-grained secure sharing of encrypted data in the cloud. In its key-
policy flavor, the re-encryption key is associated with an access structure
that specifies which type of ciphertexts can be re-encrypted. Only two
attempts have been made towards realising key-policy ABPRE (KP-
ABPRE), one satisfying replayable chosen ciphertext security (RCCA
security) and the other claiming to be chosen ciphertext secure (CCA
secure). We show that both the systems are vulnerable to RCCA and
CCA attacks respectively. We further propose a selective CCA secure
KP-ABPRE scheme in this work. Since we demonstrate attacks on the
only two existing schemes in the literature, our scheme becomes the
first KP-ABPRE scheme satisfying selective CCA security. Moreover,
our scheme has an additional attractive property, namely collusion resis-
tance. A proxy re-encryption scheme typically consists of three parties: a
delegator who delegates his decryption rights, a proxy who performs re-
encryption, and a delegatee to whom the decryption power is delegated
to. When a delegator wishes to share his data with a delegatee satisfy-
ing an access-policy, the proxy can collude with the malicious delegatee
to attempt to obtain the private keys of the delegator during delega-
tion period. If the private keys are exposed, security of the delegator’s
data is completely compromised. Hence, achieving collusion resistance is
indispensable to real-world applications. In this paper, we show that our
construction satisfies collusion resistance. Our scheme is proven collusion
resistant and selective CCA secure in the random oracle model, based
on Bilinear Diffie-Hellman exponent assumption.
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1 Introduction

In traditional proxy re-encryption (PRE) systems [1,4], the communication
model is one-to-one, in the sense that a message can be re-encrypted only
towards a particular public key. In practice, however many scenarios require the
re-encryption functionality without exact knowledge of the set of intended recip-
ients. One such major application is data sharing in untrusted cloud storage. In
the cloud, a data owner may wish to share his encrypted data with users satisfy-
ing a specified access policy. In order to enable such expressive and fine-grained
data sharing, Liang et al. [15] introduced the notion of attribute-based proxy
re-encryption (ABPRE). ABPRE is an extension of the traditional PRE primi-
tive to its attribute-based counterpart. PRE was introduced by Blaze, Bleumer
and Strauss [4] to provide delegation of decryption rights. ABPRE designates
a semi-trusted proxy to transform ciphertexts of delegators satisfying an access
policy into ciphertexts of delegatees satisfying a new access policy. The proxy
performs the conversion as a service upon receiving a special key construct called
re-encryption key from the delegator, and while transforming the ciphertext, the
proxy should not learn anything about the underlying message.

ABPRE integrates the notion of PRE with attribute-based encryption (ABE)
to effectively enhance the flexibility of delegation of decryption capability. ABE is
a generalization of Identity-Based Encryption (IBE), introduced in [22] wherein
a user’s identity is generalized to a set of descriptive attributes instead of a
single string. ABE has two variants: Key-Policy ABE (KP-ABE) and Ciphertext-
Policy ABE (CP-ABE). In KP-ABE systems, the private key captures an access
structure that specifies which type of ciphertexts the key can decrypt, while
ciphertexts are labeled with attribute sets. Its dual, CP-ABE associates a user’s
private key with attributes, while ciphertexts are embedded with access policy
information. In light of the above, ABPRE can be classified into key-policy
ABPRE (KP-ABPRE) and ciphertext-policy ABPRE (CP-ABPRE). Based on
the direction of delegation, ABPRE systems are classified into unidirectional
and bidirectional schemes. Additionally, based on the number of re-encryptions
permitted, ABPRE systems are classified into single-hop and multi-hop schemes.
In this work, we focus on unidirectional single-hop key-policy ABPRE schemes.

A cloud storage system may typically contain two kinds of encrypted data.
The first kind termed first-level ciphertext, is the information that a user A
encrypts under his attribute set W1 and is likely to share with users identified
by an attribute set W2. Such an information is subject to re-encryption by the
cloud, which performs the conversion upon getting the re-encryption key from
user A. The second kind termed as second-level ciphertext is the re-encrypted
data, converted by the cloud towards an access policy fulfilled by attribute set
W1 of user A, delegated by another user C. Such an encrypted file can not be
further re-encrypted in a single hop scenario. The only way to illegally decrypt
such ciphertexts is when a malicious user B with attributes W2 and a cloud pos-
sessing a re-encryption key collude to obtain the private key corresponding to an
access structure satisfied by W1. Again, the re-encryption rights are enabled for
a bounded, fixed period and malicious parties may want to decrypt ciphertexts
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of A even beyond that period. Collusion attack [1] refers to such an act where a
colluding delegatee and cloud extract the private key of the delegator, causing
harm to the delegator in every possible manner, such as unauthorised access
to his sensitive data, identity theft and illegal delegation of decryption power.
Thus, achieving collusion resistance is one of the major important problems
in KP-ABPRE schemes. Collusion-resistant KP-ABPRE has many real-world
applications such as blockchain based distributed cloud data storage and shar-
ing, online medical service systems, online payment systems among others [14].

Achieving this powerful functionality of fine-grained access control comes at a
cost. In a typical implementation of any previous construction of KP-ABPRE in
the literature, the ciphertext size grows linearly with the size of the attribute set
embedded by the sender. Also, the re-encryption and decryption time is propor-
tional to the number of attributes involved of the receiver. Reducing ciphertext
size and computation cost is highly beneficial in scenarios with low-bandwidth
requirements and limited computing power. In this paper, we study KP-ABPRE
in light of achieving collusion resistance and constant size ciphertexts.

Related Work and Contribution

In this work, we address the problem of designing collusion-resistant non-
interactive attribute based PRE in the key-policy setting supporting rich access
policies such as monotonic access structures, proposed in [13]. To integrate PRE
to ABE setting, Liang et al. [15] first defined the notion of attribute-based PRE
and proposed a CP-ABPRE scheme in the standard model, proven CPA-secure
under Augment Decisional Bilinear Diffie-Hellman assumption. Chung et al. [6]
gives a detailed study of the existing attribute based PRE schemes in their work.
Li et al. [13] proposed the first KP-ABPRE scheme wherein matrix access struc-
ture is used to provide key-policy. Their construction is unidirectional, multi-
use, collusion-resistant and is proven CPA-secure based on the Bilinear Deci-
sional Diffie Hellman (DBDH) assumption. Note that, their construction relies
on a trusted authority for the generation of the re-encryption keys, making the
scheme highly infeasible. Since the same trusted authority is responsible for
the generation of private keys, achieving delegation with the involvement of the
trusted authority is trivial but impractical. Their work is extended in [12] to
achieve an RCCA-secure KP-ABPRE scheme with matrix access structure to
realize key-policy. Their design is unidirectional, multi-use and is claimed to be
adaptively RCCA-secure based on DBDH assumption, with the same drawback
of entrusting the trusted authority with the generation of re-encryption keys.
Note that RCCA is a weaker variant of CCA tolerating a “harmless mauling” of
the challenge ciphertext. In 2015, Ge et al. [11] designed a unidirectional single-
hop CCA-secure KP-ABPRE scheme supporting monotonic access structures,
without random oracles under the 3-weak decisional bilinear Diffie–Hellman
inversion(3-wDBDHI) assumption. However, their construction does not adhere
to the standard definition of KP-ABPRE. In essence, their scheme is a variation
of conditional proxy re-encryption [23]. In their design, a first-level ciphertext
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C is labelled with a set of descriptive conditions W , encrypted towards an indi-
vidual public key pki, decryptable only using its corresponding private key ski.
Here, every re-encryption key is generated using an access structure tree T asso-
ciated with conditional keywords. That is, C can only be re-encrypted towards
another public key pkj specified in the re-encryption key RKi,T ,j only if W
(used to label C) satisfies the access tree T of the re-encryption key. Their sys-
tem enables one-to-one communication subject to conditions specified via access
trees in re-encryption key, rather than a many-to-many transformation enabled
by KP-ABPRE. Recently, Ge et al. [10] proposed an adaptive CCA-secure collu-
sion resistant KP-ABPRE scheme that supports any monotonic access structures
on users’ keys. Their scheme is claimed to be secure in the standard model based
on subgroup decision problem for 3 primes and composite order bilinear pairings.

Our contribution in this work is twofold. Firstly, we demonstrate attacks
on the security of two existing KP-ABPRE schemes in the literature. We show
that the KP-ABPRE construction of Ge et al. [10] is vulnerable to CCA attack.
We also demonstrate an RCCA attack on the KP-ABPRE scheme due to Li
et al. [12], which claims to be RCCA secure. Consequently, only one result due
to Li et al. [13] achieves KP-ABPRE, which is CPA secure in the random oracle
model. In [7], Cohen et al remarks on the inadequacy of CPA security in PRE.
Besides, the difficulty in achieving a CCA-secure KP-ABPRE scheme has been
discussed in [12]. Our second contribution lies in designing the first construction
of a selective CCA secure KP-ABPRE scheme in the selective model of security.
Our scheme is proven secure under Decisional Bilinear Diffie Hellman Exponent
assumption in the random oracle model. All the previous attempts to construct
KP-ABPRE schemes admitting expressive re-encryption and decryption poli-
cies produce ciphertexts whose size grows linearly with the number of attributes
embedded in the ciphertext for both levels of encryption. This paper proposes
the first KP-ABPRE result allowing monotonic access structure with constant
size ciphertext, based on the KP-ABE framework of Rao et al. [21] and BLS
signature [5]. Also, the scheme enjoys the feature of constant number of expo-
nentiations during encryption, and constant number of bilinear pairings during
encryption, re-encryption and decryption. This is especially useful in applica-
tions that have low bandwidth requirements and limited computing power.

2 Preliminaries

2.1 Bilinear Maps and Hardness Assumptions

Definition 1 (Bilinear Maps). Let G0 and G1 be two finite cyclic groups of
prime order p. A bilinear map is an efficient mapping ê : G0 × G0 → G1 which
is both: (bilinear) for all a, b ε Z

∗
p and g, h ε G0, ê(ga, hb) = ê(g , h)ab; and

(non-degenerate) if G0 = 〈g〉, then G1 = 〈ê(g , g)〉.

Definition 2 (n-Decisional Bilinear Diffie-Hellman Exponentiation
assumption [21]). The n-decisional bilinear diffie-hellman exponentiation
(n-DBDHE) assumption is, given the elements {g, gb, ga, ga2

, · · · , gan

, gan+2
, · · · ,

ga2n} ∈ G0 and Z ∈ G1, there exists no PPT adversary which can decide whether
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Z = ê(g, g)b(an+1) or a random element from G1 with a non-negligible advantage,
where g is a generator of G0 and a, b ∈R Z

∗
p.

2.2 Access Structure and Linear Secret Sharing Schemes

Definition 3 (Access Structure [2]). Let P = {P1, P2, · · · , Pn} be a set of
parties. A collection A ⊆ 2P is monotone if ∀B,C, if B ∈ A and B ⊆ C,
then C ∈ A. An access structure (respectively, monotone access structure) is
a collection (respectively, monotone collection) A of non-empty subsets of P,
i.e., A ⊆ 2P\{φ}. The sets in A are called the authorized sets, and the sets not
in A are called the unauthorized sets.

In the context of ABE, the role of parties is taken by attributes. Thus, an
access structure A contains all the authorized set of attributes. In this paper,
we work with monotone access structures. Next, we define Linear Secret-Sharing
Scheme (LSSS)-realizable access structure, used to specify access control policies
over user attributes.

Definition 4 (Linear Secret Sharing Scheme). [3] Let P be a set of par-
ties. Let M be a matrix of size l×k, called the share generating matrix. ρ : [l] → P
is a row-labeling function that maps rows in M to attributes in A. A secret shar-
ing scheme Π for access structure A is called linear in Zp represented as (M,ρ)
if it consists of the following polynomial time algorithms:

– Share(M,ρ, s): To generate shares of secret s ∈ Zp, it chooses

z2, z3, · · · , zk
R← Zp and sets v = (s, z2, z3, · · · , zk)T . It outputs (M · v) as

the vector of l shares. Share λi = (Mi ·v) belongs to attribute ρ(i), where MT
i

is the ith row of M .
– Reconstruct(M,ρ,W ): This algorithm accepts as input (M , ρ) and a set of

attributes W ∈ A. Let I = {i|ρ(i) ∈ W}. It outputs a set {ωi : i ∈ I} of secret
reconstruction constants such that

∑
i∈I ωi ·λi = s, if {λρ(i) : i ∈ I} is a valid

set of secret shares of the secret s according to Π.

3 Definition of KP-ABPRE

Definition 5 (Key-Policy Attribute-Based Proxy Re-Encryption (KP-
ABPRE)). A single-hop unidirectional KP-ABPRE scheme consists of the fol-
lowing seven algorithms:

– Setup(1κ, U): A PPT algorithm run by a certification authority CA that takes
the unary encoding of the security parameter κ and an attribute universe
description U as inputs. It outputs the public parameters as params and a
master secret key MSK.
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– KeyGen(MSK, (M,ρ), params): A PPT algorithm run by CA that takes as
input the master secret key MSK, an access structure (M,ρ) for attributes
over U and the public parameters params. It outputs a private key SK(M,ρ)

corresponding to the access structure (M,ρ).
– Encrypt(m,W, params): A PPT algorithm that takes as inputs a message

m ∈ M, an attribute set W and params. It outputs a ciphertext C, termed
as first-level ciphertext, which can be further re-encrypted.

– Decrypt(C,SK(M,ρ), params): A deterministic algorithm that takes as input
a first-level ciphertext C encrypted under attribute set W , a private key
SK(M,ρ), and params. If W |= (M,ρ), it outputs the message m ∈ M, else
output an error symbol ⊥ indicating C is invalid.

– ReKeyGen(SK(M,ρ), (M,ρ), (M ′, ρ′), params): A PPT algorithm run by the
delegator that takes as input a private key SK(M,ρ) corresponding to an access
structure (M,ρ), an access structure (M ′, ρ′) and params. It outputs a re-
encryption key RK(M,ρ)→(M ′,ρ′), that can perform re-encryption of cipher-
texts under attribute set W |= (M,ρ) towards attribute set W ′ |= (M ′, ρ′).

– ReEncrypt(C,RK(M,ρ)→(M ′,ρ′), params): A PPT algorithm run by proxy
that takes as input a first-level ciphertext C encrypted under attribute set W ,
a re-encryption key RK(M,ρ)→(M ′,ρ′) and params. It outputs a re-encrypted
ciphertext D if W |= (M,ρ) or error symbol ⊥ indicating C is invalid. The
ciphertext D cannot be re-encrypted, also termed as second-level ciphertext.

– ReDecrypt(D,SK(M ′,ρ′), params): A deterministic algorithm that takes as
input a second-level ciphertext D encrypted under an attribute set W ′, a pri-
vate key SK(M ′,ρ′) and params. If W ′ |= (M ′, ρ′), it outputs the message
m ∈ M or an error symbol ⊥ indicating D is invalid.

The consistency of a KP-ABPRE scheme for any given public parameters
params, private keys SK(M,ρ) ← KeyGen(MSK, (M,ρ), params), SK(M ′,ρ′) ←
KeyGen(MSK, (M ′, ρ′), params) and re-encryption keys RK(M,ρ)→(M ′,ρ′) ←
ReKeyGen(SK(M,ρ), (M,ρ), (M ′, ρ′), params) and ∀m ∈ M, the following
equations hold:

1. Consistency between encryption and decryption:
Decrypt(C,SK(M,ρ), params) = m, where C ← Encrypt(m,W, params).

2. Consistency between encryption, proxy re-encryption and decryption:
ReDecrypt((ReEncrypt(C,RK(M,ρ)→(M ′,ρ′), params)), SK(M ′,ρ′), params) =
m, where C = Encrypt(m,W, params) and W |= (M,ρ).

4 Security Model

Our game-based definitions of selective security of a single-hop unidirectional
KP-ABPRE against CCA attack are adaptations of the definitions of CCA secu-
rity for KP-ABPRE systems in [11]. A KP-ABPRE scheme is IND-PRE-CCA
secure if no PPT adversary has a non-negligible advantage in the below game
between the challenger C and adversary A. In this model, the adversary A needs
to fix the target access structure (M∗, ρ∗) beforehand in the Initialization phase.
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Game Template of IND-PRE-CCA security:

• Initialization: A outputs a target access structure (M∗, ρ∗) on which it
wishes to be challenged. C runs Setup(1κ, U) and sends the public parameter
params to A.
• Phase 1: A issues queries to the following oracles simulated by C:

– Private Key Extraction(OSK(M,ρ)): On input of an access structure
(M,ρ), compute its corresponding private key SK(M,ρ) and return to A.

– Re-encryption Key Generation(ORK((M,ρ), (M ′, ρ′))): Given two access
structures (M,ρ) and (M ′, ρ′)) as input, compute the re-encryption key
RK(M,ρ)→(M ′,ρ′) and return it to A.

– Re-Encryption(ORE(C, (M,ρ), (M ′, ρ′))): On input of a first-level
ciphertext C, access structures (M,ρ) and (M ′, ρ′), compute re-
encryption key RK(M,ρ)→(M ′,ρ′) and the second level ciphertext D ←
ReEncrypt(C,RK(M,ρ)→(M ′,ρ′), params). Return D to A.

– Decryption(ODec(C, (M,ρ))): Given a first level ciphertext C and an
access structure (M,ρ) as input, decrypt the ciphertext to obtain m ∈ M.
Return m or ⊥ if the ciphertext is invalid.

– Re-Decryption(ORD(D, (M ′, ρ′))): Given a second level ciphertext D and
an access structure (M ′, ρ′) as input, decrypt the ciphertext to obtain
m ∈ M. Return m or ⊥ if the ciphertext is invalid.

• Challenge: A decides whether it wants to be challenged with a first level
or a second level ciphertext. It outputs two equal length messages m0 and m1

in M to C. On receiving {m0,m1}, C picks ψ ∈ {0, 1} at random, an attribute
set W ∗ |= (M∗, ρ∗) and generates a challenge ciphertext and returns to A.
• Phase 2: A issues queries to the oracles similar to Phase 1, subject to
constraints as discussed later.
• Guess: A outputs its guess ψ′ ∈ {0, 1}.

The actual construction of challenge ciphertext and constraints on queries of A
are defined based on the ciphertext type that A opts for. Due to the existence of
two levels of ciphertexts, namely first level and second level, the security game
and different adversarial constraints at both levels are shown next.

4.1 First Level Ciphertext Security:

For the first-level ciphertext security, C interacts with A as per the game template
shown above (Game 1), with the following adversarial constraints, where the
challenge ciphertext is C∗ =Encrypt(mψ,W, params) and W |= (M∗, ρ∗):

– OSK(M∗, ρ∗) should not be queried by A.
– ORK((M∗, ρ∗), (M ′, ρ′)) must not be queried if OSK(M ′, ρ′) has already been

queried.
– OSK(M ′, ρ′) must not be queried if ORE(C∗, (M∗, ρ∗), (M ′, ρ′)) has already

been queried.
– OSK(M ′, ρ′) must not be queried if ORK((M∗, ρ∗), (M ′, ρ′)) has already been

queried.
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CCA-Security Game 1 ExpIND−PRE−CCA
A,1 (κ)

(M∗, ρ∗) ← A, params ← Setup(κ);

(m0, m1, St) ← AOSK ,ORK ,ORE ,ODec,ORD (params);

ψ εR {0, 1}, C
∗ ←Encrypt(mψ, W |= (M∗, ρ∗),params);

ψ′ ← AORK ,ORE ,ODec,ORD (C∗, St); //query constraints are shown in Section 4.1

if ψ = ψ′ return 1, else return 0

Game 1: IND-PRE-CCA security game for first level ciphertext. Note that St is
the state information maintained by A.

CCA-Security Game 2 ExpIND−PRE−CCA
A,2 (κ)

(M∗, ρ∗) ← A, params ← Setup(κ);

(m0, m1,St) ← AOSK ,ORK ,ODec,ORD (params);

ψ εR {0, 1}, C
∗ ←Encrypt(W |= (M∗, ρ∗), mψ,params);

ψ′ ← AORK ,ODec,ORD (C∗, St); //query constraints are shown in Section 4.2

if ψ = ψ′ return 1, else return 0

Game 2: IND-PRE-CCA security game for second level ciphertext.

– ORE(C∗, (M∗, ρ∗), (M ′, ρ′)) must not be queried if OSK((M ′, ρ′)) has already
been queried.

– ODec(C∗, (M∗, ρ∗)) cannot be queried by A.
– ORD(D, (M ′, ρ′)) cannot be queried for second level ciphertext D re-

encrypted towards (M ′, ρ′) where D is a challenge derivative (defined next)
of C∗.

Definition 6 Challenge Derivative[10]. A challenge derivative of C∗ in the
CCA setting is inductively defined as below:

– Reflexivity: C∗ is a challenge derivative of itself.
– Derivative by re-encryption: D is a challenge derivative of C∗ if D ←

ORE(C∗, (M∗, ρ∗), (M ′, ρ′)).
– Derivative by re-encryption key: D is a challenge derivative of C∗ if RK

(M∗,ρ∗)→(M ′,ρ′) ← ORK((M,ρ), (M ′, ρ′)) and D = ReEncrypt(C∗, RK(M,ρ)

→(M ′,ρ′), params).

Definition 7. The advantage of any PPT adversary A denoted by AdvA in
winning the above IND-PRE-CCA game (Game 1) for first level ciphertext which
we term as ExpIND−PRE−CCA

A,1 (κ) is shown as

AdvIND−PRE−CCA
A,1 :=

∣
∣
∣
∣Pr

[
ExpIND−PRE−CCA

A,1 (κ)
]

− 1
2

∣
∣
∣
∣

where the probability is over the coin tosses of challenger C and adversary A.
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The scheme is IND-PRE-CCA secure for the first level ciphertext against any
t-time adversary A that makes atmost qSK , qRK , qReEnc, qDec and qRD queries
to OSK , ORK , ORE , ODec and ORD oracles respectively, if the advantage of A
is negligibly small: AdvIND−PRE−CCA

A,1 ≤ ε.

4.2 Second Level Ciphertext Security:

For the second-level ciphertext security game (Game 2), the adversarial con-
straints on A are given below, where the challenge ciphertext is D∗ =
ReEncrypt(C,RK(M ′,ρ′)→(M∗,ρ∗), params) and C is a first level encryption of
mψ under the delegator’s attribute set W ′ satisfying access structure (M ′, ρ′).
Note that for single-hop KP-ABPRE schemes, A is given access to all possible re-
encryption keys. As a result, there is no need to provide A with the re-encryption
oracle.

– OSK((M∗, ρ∗)) should not be queried by A.
– ORD(D∗, (M∗, ρ∗)) must not be queried.

Definition 8. The advantage of any PPT adversary A denoted by AdvA in
winning the above IND-PRE-CCA game (Game 2) for second level ciphertext
which we term ExpIND−PRE−CCA

A,2 (κ) is shown as

AdvIND−PRE−CCA
A,2 :=

∣
∣
∣
∣Pr

[
ExpIND−PRE−CCA

A,2 (κ)
]

− 1
2

∣
∣
∣
∣

where the probability is over the coin tosses of challenger C and adversary A.

The scheme is IND-PRE-CCA secure for the second level ciphertext against
any t-time adversary A that makes atmost qSK , qRK , qReEnc, qDec and qRD

queries to OSK , ORK , ODec and ORD oracles respectively, if the advantage of
A is negligibly small: AdvIND−PRE−CCA

A,2 ≤ ε.

DSK-Security Game ExpDSK
A (κ)

(M∗, ρ∗) ← A, params ← Setup(κ);

(SK(M∗,ρ∗), St) ← AOSK ,ORK (params); //query constraints shown in Section 4.3

if SK(M∗,ρ∗) is a valid private key of (M∗, ρ∗), return 1, else return 0

Game 3: DSK security game for KP-ABPRE schemes.

4.3 Collusion Resistance

Collusion-resistance, also termed as delegator secret key security (DSK security)
prevents a colluding proxy and delegatee to recover private keys of the delegator
in full. The game template for DSK security is shown below, adapted from [18],
illustrated in Game 3.
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– Setup: A outputs a challenge access structure (M∗, ρ∗). C generates the
public parameters params using the Setup algorithm and returns it to A.

– Queries: A issues queries to the Private Key Extraction(OSK(M,ρ)) and
Re-encryption Key Generation(ORK((M,ρ), (M ′, ρ′))) oracle adaptively. It
cannot query for the private key of the target access structure (M∗, ρ∗).

– Output: A returns SK(M∗,ρ∗) as the private key of the target access structure
(M∗, ρ∗). A wins the game if SK(M∗,ρ∗) is a valid private key of (M∗, ρ∗).

Definition 9. The advantage of any PPT adversary A denoted by AdvA in win-
ning the DSK-security game given above (Game 3) which we term ExpDSK

A (κ)
is shown as

AdvDSK
A := Pr[A wins]

where the probability is over the coin tosses of challenger C and adversary A.

The scheme is DSK secure against any t-time adversary A that makes atmost
qSK and qRK queries to OSK and ORK oracles respectively, if the advantage of
A is negligibly small: AdvDSK

A ≤ ε.

5 Analysis of a CCA-secure KP-ABPRE Scheme

5.1 Review of the Scheme Due to Ge et al. [10]

The CCA-secure KP-ABPRE scheme due to Ge et al [10] consists of the following
algorithms. It is based on composite order bilinear pairing.

– Setup(1κ, U): The setup algorithm chooses a bilinear group G0 of order
N = p1p2p3. Let Gpi

denote the subgroup of G0 of order pi. It chooses α, φ ∈
ZN , g, ĝ1, ĝ2 ∈ Gp1 , X3 ∈ Gp3 . For each attribute i, it picks si ∈ ZN and
computes Ti = gsi . Let SYM be a CCA-secure one-time symmetric encryption
scheme, and Sig = (G,S,V) be a strongly unforgeable one-time signature
scheme. H1 : G1 → Z

∗
N and H2 : G1 → {0, 1}∗ are collision-resistant hash

functions. The master secret key is MSK = (α,X3). The public parameters
are params = (N, g, ĝ1, ĝ2, ĝ2

φ, ê(g, g)α, Ti, SY M, (G,S,V),H1,H2).
– KeyGen(MSK, (M,ρ), params): Given as input an access structure (M,ρ),

the trusted authority picks a random vector μ such that μ · 1 = α. For each
row Mx of matrix M , it chooses rx ∈ ZN and Wx, Vx ∈ Gp3 and computes
private key as: ∀Mx ∈ {M1, · · · Ml} : Kx,1 = gMx·μT rx

ρ(x)Wx, Kx,2 = grxVx.
– Encrypt(m,W, params): To encrypt a message m ∈ G1 under an attribute

set W , the sender encrypts as shown below:
1. Set C1 = W . Select a one-time signature pair (svk, ssk) ← G.
2. Pick s ∈ ZN and compute C0 = m · ê(g, g)αs, C2 = gs,∀i ∈ W :

Ci = T s
i , C3 = (ĝ1svkĝ2

φ)s. Run the sign algorithm σ ←
S(ssk, (C0, C2, Ci, C3)).

3. Return the original ciphertext C = (svk, C0, C1, C2, Ci, C3, σ).
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– ReKeyGen(SK(M,ρ), (M,ρ), (M ′, ρ′), params): The delegator generates a
re-encryption key from access structure (M,ρ) to (M ′, ρ′), as shown below:
1. Choose θ ∈ Zp and δ ∈ G1. For each row Mx of the matrix M , compute:

rk1 = K
H1(δ)
x,1 · T θ

ρ(x), rk2 = K
H1(δ)
x,2 , rk3 = gθ.

2. Select an attribute set W ′ where W ′ |= (M ′, ρ′).
3. Select a one-time signature pair (svk′, ssk′) ← G.
4. Pick s′ ∈ ZN and compute rk4 = δ · ê(g, g)αs′

, rk5 = gs′
,∀i ∈ W ′ : rk6,i =

T s′
i , rk7 = (ĝ1svk′

ĝ2
φ)s′

.
5. Run the sign algorithm σ′ ← S(ssk′, (rk4, rk5, rk6i, rk7)).
6. Return RK(M,ρ)→(M ′,ρ′) = (rk1, rk2, rk3, S′, svk′, rk4, rk5, rk6,i, rk7, σ

′).
– ReEncrypt(C,RK(M,ρ)→(M ′,ρ′), params): On input of an original ciphertext

C, the proxy re-encrypts C towards access structure (M ′, ρ′) as below:
1. Check if the following equations hold:

V(svk, σ, (C0, C2, Ci, C3))
?= 1, ê(C2, ĝ1

svkĝ2
φ) ?= ê(g, C3).

2. If the above check fails, return ⊥. Else, if W |= (M,ρ), compute
reconstruction constants ωx such that

∑
ρ(x)∈W ωxMx = 1. Compute

Q =
∏ ê(C2,rk1)

ωx

(ê(Cρx ,rk2)ê(Cρ(x),rk3))ωx .

3. Pick a random key ∈ G1 and compute Φ1 = SY M.Enc(H2(key,G)),
where G = (C||(W ′, svk′, rk4, rk5, rk6,i, rk7, σ

′)||Q).
4. Select an attribute set W ′′ such that W ′′ |= (M ′, ρ′) and a one-time

signature pair (svk′′, ssk′′) ← G. Choose s′′ ∈ ZN and compute C ′′
0 =

key · ê(g, g)αs′′
, C ′′

2 = gs′′
, ∀i ∈ W ′′ : C ′′

i = T s′′
i , C ′′

3 = (ĝsvk′′
1 ĝφ

2 )s′′
. Run

the sign algorithm to generate σ′′ ← S(ssk′′, (C ′′
0 , C ′′

2 , C ′′
i , C ′′

3 )). Denote
Φ2 = (W ′′, svk′′, C ′′

0 , C ′′
2 , C ′′

i , C ′′
3 , σ′′).

5. Return the re-encrypted ciphertext D = (Φ1, Φ2).
– Decrypt(C,SK(M,ρ), params): In order to decrypt a first-level ciphertext C,

the decryption algorithm proceeds as below:
1. Check the validity of the ciphertext using Eqs. (1) and (2).
2. If check fails, output ⊥ and aborts. Otherwise if W �|= (M,ρ),

output ⊥ and aborts. Else, compute reconstruction constants
ωx such that

∑
ρ(x)∈W ωxMx = 1. Compute plaintext m =

C0

/
∏

ρ(x)∈S
ê(C2,Kx,1)

ωx

ê(Cρ(x),Kx,2)ωx .

– ReDecrypt(D, sk(M ′,ρ′), params): To decrypt a second-level ciphertext D =
(Φ1, Φ2), the decryption algorithm proceeds as below:

• Check if the following equations hold:

V(svk′′, σ′′, (C ′′
0 , C ′′

2 , C ′′
i , C ′′

3 )) ?= 1, ê(C ′′
2 , ĝsvk′′

1 ĝφ
2 ) ?= ê(g, C ′′

3 ).

If the checks fail, output ⊥ and abort. Further, if W ′′ �|= M ′′, out-
put ⊥ and abort. Compute the reconstruction constants ω′′ such that
∑

ρ(x′)∈W ′′ ω′′
xM ′′

x = 1. Compute key = C ′′
0

/
∏

ρ(x′)∈W ′′
ê(C′′

2 ,Kx′,1)
ω′′

x

ê(C′′
ρx′ ,Kx′,2)

ω′′
x

.
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• Run the decryption algorithm G = SY M.Dec(H2(key), Φ1).
• Check if the Eqs. (1) and (2) hold. If fails, return ⊥ and abort. Other-
wise, perform the following checks:

V(svk′, σ′, (rk4, rk5, rk6,i, rk7))
?= 1, ê(rk5, ĝsvk′

1 ĝφ
2 ) ?= ê(g, rk7).

If fails, return ⊥ and abort. If W ′ �|= (M ′, ρ′), return ⊥ and abort.
• Compute the reconstruction constants ω′

x such that
∑

ρ(x′)∈W ′ ω′
xM ′

x =

1. Next, compute δ = rk4

/
∏

ρ(x′)∈W ′
ê(rk5,Kx′,1)

ω′
x

ê(rk6,ρ(x′),Kx′,2)
ω′

x
.

• Compute QH1(δ)
−1

= ê(g, g)sα and output the plaintext m = C0/
ê(g, g)sα.

5.2 Attack on the Scheme

In this section we present a CCA-attack on the scheme due to Ge et al [10]. Note
that the following attack is launched in the second-level ciphertext CCA-security
game. In Phase 1 of the security game, the challenger C provides the adversary A
with all possible re-encryption keys in the system, as per the security definition in
[10]. Let D∗ = (Φ∗

1, Φ
∗
2) be the challenge ciphertext generated by C, which is the

re-encryption of message mψ (selected randomly by C during challenge phase)
from a delegator’s attribute set satisfying access structure (M ′, ρ′) towards target
access structure (M∗, ρ∗). The CCA attack is demonstrated below.

1. A parses re-encryption key RK(M ′,ρ′)→(M∗,ρ∗) = (rk∗
1 , rk

∗
2 , rk

∗
3 ,W

∗, svk′∗,
rk∗

4 , rk
∗
5 , rk

∗
6,i, rk

∗
7 , σ

′∗).
2. A creates a first-level decryption query for a ciphertext generated as below:

– Set C0 = rk∗
4 , C1 = W ∗, C2 = rk∗

5 and C3 = rk∗
7 .

– For all attributes i ∈ W ∗, set Ci = rk∗
6,i. Set the signature σ = σ′∗.

– The ciphertext CA1 = (svk′∗, C0, C1, C2, Ci, C3, σ) is passed a parameter
to the first level decryption oracle provided by the challenger.

3. C decrypts ciphertext CA1 using Decrypt algorithm to extract δ∗ used in
re-encryption key generation corresponding to challenge ciphertext D∗.

4. A parses challenge ciphertext component Φ∗
2 = (W ′′∗, svk′′∗, C ′′∗

0 , C ′′∗
2 , C ′′∗

i ,
C ′′∗

3 , σ′′∗).
5. Using this second-level challenge ciphertext, the adversary now creates

another decryption query for a first level ciphertext generated as below:
– Set C0 = C ′′∗

0 , C1 = W ′′∗, C2 = C ′′∗
2 and C3 = C ′′∗

3 .
– For all attributes i ∈ W ′′∗, set Ci = C ′′∗

i . Set the signature σ = σ′′∗.
– The ciphertext CA2 = (svk′′∗, C0, C1, C2, Ci, C3, σ) is passed a parameter

to the first level decryption oracle provided by the challenger.
6. On decryption of CA2, A receives key∗ used in generation of the challenge

ciphertext D∗. Therefore, A can now recover G∗ using the symmetric decryp-
tion algorithm G∗ = SY M.Dec(H2(key∗), Φ∗

1).
7. A parses G∗ = (C||(W ∗, svk∗, rk∗

4 , rk
∗
5 , rk

∗
6,i, rk

∗
7 , σ

∗)||Q) and then parses
C = (svk, C0, C1, C2, Ci, C3, σ).
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8. Finally A computes mψ = C0

QH1(δ)−1 as per ReDecrypt() algorithm.

This completes the description of the attack. A can recover the original message
mψ re-encrypted by C towards a target access structure (M∗, ρ∗) in the challenge
ciphertext D∗, which successfully breaks the CCA security of the scheme.

6 Analysis of an RCCA-secure KP-ABPRE Scheme

6.1 Review of the Scheme Due to Li et al. [12]

The RCCA-secure KP-ABPRE scheme due to Li et al. [12] consists of the fol-
lowing algorithms.

– Setup(1κ, U): The setup algorithm takes as input the universe description
U , where U = {0, 1}∗ and security parameter κ. It chooses groups G0,G1 of
prime order p. Let g by a generator of G0. It randomly picks values α ∈ Zp and
g1, h ∈ G0, and sets MSK = α. k is a parameter determined by κ and {0, 1}k

is the message space M. Three cryptographic hash functions are chosen as
follows: F : {0, 1}∗ → G0, H1 : {0, 1}∗ → Zp and H2 : {0, 1}∗ → {0, 1}k. The
public parameters params = 〈g, g1, h, gα, F,H1,H2, ê(g, h)α〉.

– KeyGen(MSK, (M,ρ), params): On input of an access structure (M,ρ)
where l × k is the size of access structure M , the trusted authority exe-
cutes Share(M,ρ, α) to obtain l sets of shares λρ(i) = Mi · v, where it picks
y2, · · · yn ∈ Zp and sets v = (α, y2, · · · yn). It chooses r1, · · · rl ∈ Z

∗
p and com-

putes the private key SK(M,ρ) as follows: K11 = hλρ(1) · F (ρ(1))r1 ,K21 =
gr1 , · · · ,K1l = hλρ(l) ·F (ρ(l))rl ,K2l = grl . It outputs SK(M,ρ) along with the
description of (M,ρ).

– Encrypt(m,W, params): Given as input a message m ∈ M and an attribute
set W , the algorithm randomly picks R ∈ G1 and computes s1 = H1(R,m)
and r = H2(R). It computes the first level encryption C as follows: C0 =
R · ê(g, h)αs1 , C1 = gs1 , C2 = gs1

1 , C3 = r ⊕ m, {Cx = F (x)s1 ,∀x ∈ W}. It
outputs ciphertext C = 〈C0, C1, C2, C3, {Cx,∀x ∈ W},W 〉.

– ReKeyGen(SK(M,ρ), (M,ρ), (M ′, ρ′), params): To generate a re-encryption
key from an access structure (M,ρ) to (M ′, ρ′), the trusted authority calls
the KeyGen algorithm and chooses d ∈ Z

∗
p at random and computes gαd,

{g
λρ(i)d
1 } where λρ(i) for i = 1 to l is the set of l shares corresponding to access

structure (M,ρ). It picks an attribute W ′ |= (M ′, ρ′) and encrypts gαd with
the attributes of W ′ by computing CT1 = Encrypt(gαd,W ′, params). It
picks random r′

1 · · · r′
l ∈ Zp and recomputes key RK(M,ρ)→(M ′,ρ′) as follows:

rk11 = hλρ(1) · F (ρ(1))r′
1 · g

λρ(1)d
1 , rk21 = gr′

1 , · · · , rk1l = hλρ(l) · F (ρ(l))r′
l ·

g
λρ(l)d
1 , rk2l = gr′

l . It returns the re-encryption key as RK(M,ρ)→(M ′,ρ′) =
({rk1i, rk2i for i=1 to l}, CT1).

– ReEncrypt(C,RK(M,ρ)→(M ′,ρ′), params): Given as input a first-level cipher-
text C and a re-encryption key RK(M,ρ)→(M ′,ρ′), the re-encryption algorithm
executes Reconstruct (M,ρ,W ) to obtain a set {ωi : i ∈ I} of secret recon-
struction constants where I = {i ∈ [l] : attρ(i) ∈ W}. If W |= (M,ρ), then
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the relation
∑

i∈I ωiλρ(i) = α implicitly holds. It computes the re-encrypted

ciphertext component D4 = ê(C1,
∏

i∈I rk
ωi
1i )

∏
i∈I ê(rk2i,C

ωi
ρ(i))

= ê(g, h)s1αê(g, g1)(s1αd). It sets

D0 = C0,D1 = C1,D2 = C2,D3 = C3,D5 = CT1 and outputs second level
ciphertext D = 〈D0,D1,D2,D3,D4,D5〉.

– Decrypt(C or D,SK(M ′,ρ′), params): If the input to this algorithm is
a first level ciphertext C encrypted under (M,ρ), the decryption algo-
rithm invokes ReEncrypt(C,RK(M,ρ)→(M ′,ρ′), params) to obtain D =
〈D0,D1,D2,D3,D4,D5〉. If the input is a second level ciphertext D
and a private key SK(M ′,ρ′), the algorithm first decrypts D5 =
〈C ′

0, C
′
1, C

′
2, C

′
3, {C ′

x},W ′〉 by checking if W ′ |= (M ′, ρ′) and computing the
set of reconstruction constants {ω′

i : i ∈ I} where I = {i ∈ [l] : attρ(i)′ ∈ W ′}
using Reconstruct (M ′, ρ′,W ′) such that

∑
ρ′(i)∈W ′ ω′

iM
′
i = 1 holds implicitly.

It computes CT2 = ê(C′
1,

∏
i∈I K

ω′
i

1i )
∏

i∈I ê(K2i,C
′ω′

i
ρ(i))

= ê(g, h)s1α. It extracts gαd = D0/CT2. It

computes CT3 = ê(gαd,D2) = ê(g, g1)s1αd. Next, it computes R = D0 · CT3/

D4, m = D3 ⊕ H2(R) and s = H1(R,m). If D0
?= R · ê(g, h)αs and

D4
?= ê(g, h)s1α · ê(gαd, g

s1)
1 , it outputs m. otherwise return ⊥.

6.2 Attack on the Scheme

In this section, we present an RCCA-attack on the scheme due to Li et al [12].
The following attack is launched in the first-level ciphertext RCCA-security
game. Suppose that C∗ = 〈C∗

0 , C∗
1 , C∗

2 , C∗
3 , {C∗

x},W ∗〉 is the challenge cipher-
text generated by C, which is the encryption of message mψ (selected randomly
by C during challenge phase from messages {m0,m1}) towards a delegator’s
attribute set W ∗ |= (M∗, ρ∗) where (M∗, ρ∗) is the target access structure. The
RCCA attack launched by the adversary A is demonstrated below:

1. The adversary A picks β ∈ Z
∗
p at random.

2. It computes C0” = C∗
0 · ê(g, h)αβ = R · ê(g, h)α(s∗

1+β).
3. It computes C1” = C∗

1 · gβ = gs∗
1+β and C2” = C∗

2 · gβ
1 = g

s∗
1+β

1 .
4. It picks C3” ∈ {0, 1}k at random.
5. For all x ∈ W ∗, it computes {Cx” = C∗

x · F (x)β = F (x)s∗
1+β}.

6. It constructs a first level ciphertext C” = 〈C0”, C1”, C2”, C3”, {Cx”},W ∗〉.
7. It queries the re-encryption oracle ORE(C”, (M∗, ρ∗), (M ′, ρ′)) such that

OSK(M ′, ρ′) is already queried upon for the access structure (M ′, ρ′).
8. The returned second level ciphertext is D = 〈D0,D1,D2,D3,D4,D5〉, such

that the ciphertext component D4 = ê(g, h)α(s∗
1+β) · ê(g, g1)(s

∗
1+β)αd.

9. A parses D5 = 〈C ′
0, C

′
1, C

′
2, C

′
3, {C ′

x},W ′〉. Since SK(M ′,ρ′) is known to
A, it computes the set of reconstruction constants {ω′

i : i ∈ I} where
I = {i ∈ [l] : attρ(i)′ ∈ W ′} by invoking Reconstruct (M ′, ρ′,W ′) such

that
∑

ρ′(i)∈W ′ ω′
iM

′
i = 1 holds and computes CT2 = ê(C′

1,
∏

i∈I K
ω′

i
1i )

∏
i∈I ê(K2i,C

′ω′
i

ρ(i))
=

ê(g, h)s1α.
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10. It extracts gαd = D0/CT2 and computes CT3 = ê(gαd,D2) =
ê(g, g1)(s

∗
1+β)αd.

11. It computes R∗ = D0 · CT3/D4 and r∗ = H2(R∗).
12. Finally, A computes mψ = r ⊕ C∗

3 .

Note that, as per the security definition of RCCA-secure PRE by Libert
et al. [17], the adversary cannot issue decryption queries for any second level
ciphertext D if Decrypt(D,SK(M ′,ρ′)) ∈ {m0,m1} (such an adversarial con-
straint is not imposed in the security game of CCA secure PRE [10], and the
adversary is allowed to issue such decryption queries). Accordingly, the adver-
sary A does not query the decryption of any challenge ciphertext derivative in
the above attack. In fact, the ciphertext component C ′′

3 is picked at random. The
RCCA attack could be launched due to the absence of ciphertext validation in
the re-encryption algorithm of the given construction. A can recover the origi-
nal message mψ encrypted by the challenger towards the target access structure
(M∗, ρ∗) as a first level challenge ciphertext C∗, which successfully breaks the
RCCA security of the scheme. This completes the description of the attack.

7 Our Unidirectional CCA-secure KP-ABPRE Scheme

7.1 Technical Overview of Construction

The starting points of our construction are the KP-ABE scheme of Rao et al. [21]
which relies on the threshold public key encryption framework of Qin et al. [20]
to design the basic construction realising monotone LSSS access structure and
BLS short signature [5]. Constant size first-level ciphertexts are achieved by
increasing the private key size by a factor of |W |, where W is the set of distinct
attributes associated with the access structure embedded in the private key. The
CA first chooses a random exponent α ∈ Z

∗
p as the master secret key and com-

putes the public component Y = ê(g, g)α. The first-level ciphertext of a message
m ∈ M and an attribute set W is generated using the “Hashed El-Gamal” [8,9]
encryption system. First, a random string σ ∈ {0, 1}lσ is chosen and s =
H1(m||σ) is computed. Then the ciphertext components C0 = (m||σ)⊕H2(Y s),
C1 = gs, C2 = gs

1 and C3 =
(
h0

∏
atty∈W hy

)s are computed. Component
C4 =

(
H3(W,C0, C1, C2, C3)

)s can be viewed as a BLS signature signing the
components (C0, C1, C2, C3,W ) used during decryption/re-encryption to check
well-formedness of the first-level ciphertexts. H1,H2 and H3 are cryptographic
hash functions defined in our construction. Finally, C = 〈C0, C1, C2, C3, C4,W 〉
is returned as the first-level ciphertext.

At the second-level, constant size ciphertexts is achieved by increasing the
re-encryption key size by a factor of |W |, where W is the set of distinct attributes
associated with the access structure (M,ρ) embedded in the private key of the
delegator. To delegate decryption rights towards an access structure (M ′, ρ′),
the delegator chooses strings δ ∈ {0, 1}lm , γ ∈ {0, 1}lσ , picks an attribute set
W ′ |= (M ′, ρ′) and computes s′ = H1(δ||γ). Next, it computes re-encryption key

components rk4 = (δ||γ) ⊕ H2(Y s′
), rk5 = gs′

, rk6 =
(
h0

∏
atty∈W ′ hy

)s′
and
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computes a BLS signature rk7 =
(
H5(W ′, rk4, rk5, rk6)

)s′
on the components

(rk4, rk5, rk6,W ′). We construct our re-encryption key in such a way that the
string (δ||γ) is blinded with a random salt and can only be removed by a delegatee
with private key SK(M ′,ρ′) such that W ′ |= (M ′, ρ′) during decryption of the
re-encrypted ciphertexts. The private key Ki of delegator can be retrieved from
the re-encryption key component rk1i only by users with the knowledge random
element θ (chosen by delegator). This clearly makes it infeasible to retrieve the
private key of the delegator from the re-encryption key and provides collusion-
resistance. The CCA-security of the second-level ciphertext follows from the two
integrated “hashed” CCA-secure El-Gamal encryptions (D1,D3) in the second-
level ciphertext D = (D0,D1,D2,D3,D4,D5,D6,W

′).

7.2 Our Construction

– Setup(1κ, U): The algorithm chooses two bilinear groups G0,G1 of prime
order p. Let g and g1 be generators of G0, and ê : G0 × G0 → G1

denote an admissible bilinear map. It chooses a random exponent α ∈ Z
∗
p

and computes Y = ê(g, g)α. It picks h0 ∈ G0 and for every attribute
atty ∈ U , picks hy ∈ G0. lm and lσ are parameters determined by κ,
{0, 1}lm is the size of the message space M. Let |U | = n be the attribute
universe size. Five cryptographic hash functions, modelled as random ora-
cles in the security proof are chosen as follows: H1 : {0, 1}lm+lσ →
Z

∗
p,H2 : G1 → {0, 1}lm+lσ ,H3 : {0, 1}∗ × G

3
1 → G0,H4 : {0, 1}lm →

Z
∗
p,H5 : {0, 1}∗ × G

2
1 → G0. The public parameters returned are params =

〈G0,G1, ê, p, g, g1, h0, h1, · · · hn, Y,H1,H2,H3,H4,H5〉. The master secret key
MSK is α.

– KeyGen(MSK, (M,ρ), params): On input of an access structure (M,ρ)
where l×k is the size of matrix M , the CA executes Share(M,ρ, α) to obtain
a set of l shares λρi

= Mi · v, where v ∈R Z
k
p, such that v · 1 = α. Note that

1 = (1, 0, · · · , 0) is a vector of length k. For each row Mi of the matrix M , it
picks ri ∈ Z

∗
p and computes:

Ki = gλρ(i)(h0hρ(i))ri ,K ′
i = gri , K ′′

i = {K ′′
iy : K ′′

iy = hri
y ,∀y ∈ [n]\{ρ(i)}}.

It returns SK(M,ρ) = 〈(M,ρ), {∀i ∈ [l] : Ki,K
′
i,K

′′
i }〉 to the user.

– Encrypt(m,W, params): Given as input a message m ∈ M and an attribute
set W , the first-level encryption algorithm encrypts m as below:

• Select σ ∈ {0, 1}lσ .
• Compute s = H1(m||σ).
• Compute C0 = (m||σ) ⊕ H2(Y s).
• Compute C1 = gs, C2 = gs

1.
• Compute C3 =

(
h0

∏
atty∈W hy

)s.
• Compute C4 =

(
H3(W,C0, C1, C2, C3)

)s
.

• Return the first-level ciphertext C = 〈C0, C1, C2, C3, C4,W 〉.
– Decrypt(C,SK(M,ρ), params): On input of a first level ciphertext C and a

private key SK(M,ρ), the decryption algorithm works as below:
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1. First check if the ciphertext is well-formed as below:

ê(g, C2)
?= ê(g1, C1) (1)

ê(g, C3)
?= ê(C1, h0

∏

atty∈W

hy), (2)

ê(g, C4)
?= ê(C1,H3(W,C0, C1, C2, C3)). (3)

2. If the checks fail, output ⊥ and abort.
3. Otherwise, execute Reconstruct (M,ρ,W ) to obtain a set {ωi : i ∈ I}

of secret reconstruction constants where I = {i ∈ [l] : attρ(i) ∈ W}. If
W |= (M,ρ), then the relation

∑
i∈I ωiλρ(i) = α implicitly holds.

4. Compute: E1 =
∏

i∈I

(
Ki ·

∏
atty∈W,y �=ρ(i) K ′′

i,y

)ωi

, E2 =
∏

i∈I(K
′
i)

ωi

5. Compute the plaintext:

(m||σ) = C0 ⊕ H2

(
ê(C1, E1)
ê(C3, E2)

)

. (4)

6. If C1
?= gH1(m||σ), return the plaintext m, else return ⊥.

– ReKeyGen(SK(M,ρ), (M,ρ), (M ′, ρ′), params): To generate a re-encryption
key from an access structure (M,ρ) to (M ′, ρ′), the re-encryption key gener-
ation algorithm computes the re-key RK(M,ρ)→(M ′,ρ′) as follows:
1. Choose θ ∈ Zp. Pick δ ∈ {0, 1}lm and γ ∈ {0, 1}lσ . For each row Mi of

the matrix M of size l × k, compute:

rk1i = K
H4(δ)
i ·

(
h0hρ(i)

)θ
, rk2i = (K ′

i)
H4(δ) · gθ,

rk3i = {rk3iy : rk3iy =
(
K

′′H4(δ)
iy · hθ

y

)
,∀y ∈ [n]\{ρ(i)}}.

2. Compute s′ = H1(δ||γ).
3. Compute rk4 = (δ||γ) ⊕ H2(Y s′

).
4. Compute rk5 = gs′

.
5. Pick an attribute set W ′ |= (M ′, ρ′).
6. Compute rk6 =

(
h0

∏
atty∈W ′ hy

)s′
.

7. Compute rk7 =
(
H5(W ′, rk4, rk5, rk6)

)s′
.

8. Return the re-encryption key RK(M,ρ)→(M ′,ρ′) = ({∀i ∈ [l] :
rk1i, rk2i, rk3i}, rk4, rk5, rk6, rk7,W

′).
– ReEncrypt(C,RK(M,ρ)→(M ′,ρ′), params): Given as input a first-level cipher-

text C and a re-encryption key RK(M,ρ)→(M ′,ρ′), the re-encryption algorithm
re-encrypts the first-level ciphertext as below:
1. It checks the validity of the ciphertext C using Eqs. 1, 2, 3.
2. Check the validity of the re-encryption key by checking if the following

equations hold:

ê(g, rk6)
?= ê(h0

∏

atty∈W ′
hy, rk5) (5)

ê(rk7, g) ?= ê(H5(W ′, rk4, rk5, rk6), rk5). (6)

If the above checks fail, return ⊥.
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3. Else if W |= (M,ρ), compute a set {ωi : i ∈ I} of secret reconstruction
constants where I = {i ∈ [l] : attρ(i) ∈ W} using Reconstruct (M,ρ,W )

such that
∑

ρ(i)∈S ωiMi = 1 implicitly holds. Compute re1 =
∏

i∈I

(
rk1i ·

∏
atty∈W,y �=ρ(i) rk3i

)ωi

, re2 =
∏

i∈I(rk2i)ωi

4. Next, compute:

D0 =
ê(C1, re1)
ê(C3, re2)

= Y sH4(δ). (7)

5. Set ciphertext components: D1 = C0, D2 = C1, D3 = rk4, D4 =
rk5, D5 = rk6, D6 = rk7. Return second level ciphertext D =
〈D0,D1,D2,D3,D4,D5,D6,W

′〉.
– ReDecrypt(D,SK(M ′,ρ′), params): In order to decrypt a second-level

ciphertext D, the decryption algorithm proceeds as below:
1. Check if the ciphertext is well-formed by checking below equations:

ê(D4, h0

∏

atty∈W ′
hy) ?= ê(g,D5) (8)

ê(D6, g) ?= ê(H5(W ′,D3,D4,D5),D4). (9)

2. If the check fails, abort and return ⊥.
3. Otherwise, if W ′ |= (M ′, ρ′), compute the set of reconstruction constants

{ω′
i : i ∈ I} where I = {i ∈ [l] : attρ(i)′ ∈ W ′} using Reconstruct

(M ′, ρ′,W ′) such that
∑

ρ′(i)∈W ′ ω′
iM

′
i = 1 holds implicitly. Compute:

E′
1 =

∏

i∈I

(
Ki ·

∏

atty∈W ′,y �=ρ(i)

K ′′
i,y

)ω′
i

, E′
2 =

∏

i∈I

(K ′
i)

ω′
i

4. Compute δ as below:

(δ||γ) = D3 ⊕ H2

(
ê(D4, E

′
1)

ê(D5, E′
2)

)

. (10)

5. If D4
?= gH1(δ||γ) does not hold, return ⊥. Else, extract plaintext as below:

(m||σ) = D1 ⊕ H2(D
1/H4(δ)
0 ). (11)

6. If D2
?= gH1(m||σ), output m, otherwise return ⊥.

7.3 Correctness

The consistency of our KP-ABPRE scheme is given in the full version of the
paper [19] due to space limit.
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7.4 Security Proof

Proof Sketch. We now give an intuitive proof sketc.h of selective CCA secu-
rity of our scheme for both first-level and second-level ciphertexts in the random
oracle model, based on the n-Decisional Bilinear Diffie-Hellman Exponentia-
tion (n-DBDHE) assumption. We first analyse the security for first-level cipher-
texts. As per the Random Oracle Model, the Challenger handles the adversarial
queries as follows: hash queries by oracles H1, · · · ,H5, private key extraction
queries by oracle OSK(M,ρ), re-encryption key generation queries by oracle
ORK((M,ρ), (M ′, ρ′)), re-encryption queries by oracle ORE(C, (M,ρ), (M ′, ρ′)),
decryption queries by oracle ODec(C, (M,ρ)) and re-decryption queries by oracle
ORD(D, (M ′, ρ′)). In the above oracles, the Challenger injects the hard problem
instance into the query responses to Oracles H3 and private key extraction ora-
cle OSK(M,ρ) respectively. The first-level and second-level decryption oracles
return message m or ⊥ as per the protocol and the remaining oracles return
uniformly random elements from the respective domains.

The Challenger picks α′ ∈R Z
∗
p and implicitly sets msk as α = α′ + an+1,

where an+1 is not known to the Challenger. It computes Y = ê(g, g)α′ ·
e(ga, gan

) = ê(g, g)α, as proven in the Initialization Phase of the security
proof (Section 7.5, page 20) in the full version of the paper [19]. For an ora-
cle query to H3(W,C0, C1, C2, C3), the Challenger picks υ ∈R Z

∗
p and injects

the hard problem instance by computing value μ = (gan

)υ. It returns μ as the
value of H3(W,C0, C1, C2, C3). It is easy to follow that the computed value
μ ∈ G0 is identically distributed as the real hash value from the construc-
tion. For a private key extraction query for access structure (M,ρ), if the
target attribute set W ∗ |= (M,ρ), the Challenger aborts and returns “fail-
ure”. Otherwise, it computes the private keys by appropriately injecting the
2n given values of the hard problem instance at applicable points, as dis-
cussed in Phase 1 description (Sect. 7.5, page 21) in the full version of the
paper [19]. The detailed analysis shows that the keys computed are identically
distributed as the keys generated by the KeyGen algorithm in the construction.
In the Challenge Phase, the challenger picks ψ ∈ {0, 1} at random and
encrypts mψ under target attribute set W ∗ to form challenge ciphertext C∗ =
(C∗

0 , C∗
1 , C∗

2 , C∗
3 , C∗

4 ,W ∗) demonstrating that the ciphertext computed is identi-
cally distributed as the ciphertext generated by the Encrypt algorithm in the
construction. In particular, the hard problem instance Z is injected into the
ciphertext component C∗

0 , computed as C∗
0 = (mψ||σ∗) ⊕ H2(Z · ê(gb, gα′

)),
where σ∗ ∈R {0, 1}lσ . The details are provided in the full version of the
paper [19] (Sect. 7.5, page 24). Therefore, once the adversary A produces its
guess ψ′ ∈ {0, 1}, if ψ′ = ψ, A wins the game and the Challenger decides
ê(gb, gan+1

) = Z, else Z is random. The security game for second-level cipher-
texts proceeds in a similar way as the first-level security game. The computation
of the challenge second level ciphertext D∗ = (D∗

0 ,D
∗
1 ,D

∗
2 ,D

∗
3 ,D

∗
4 ,D

∗
5 ,D

∗
6 ,W

∗)
shown in the Challenger Phase (Sect. 7.6, page 29) in the full version of the
paper [19] indicates that the ciphertext computed is identically distributed as
the ciphertext generated by the ReEncrypt algorithm in the construction. In
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particular, the hard problem instance is injected in the ciphertext component
D∗

3 , where D∗
3 = (δ∗||γ∗) ⊕ H2(Z · ê(gb, gα′

)) = (δ∗||γ∗) ⊕ H2(Y s′
). Therefore,

once the adversary A produces its guess ψ′ ∈ {0, 1}, if ψ′ = ψ, A wins the game
and the Challenger decides ê(gb, gan+1

) = Z, else Z is random.

First Level Ciphertext Security

Theorem 1. If a (t, ε)IND-PRE-CCA adversary A has a non-negligible
advantage ε in breaking the CCA security of the given KP-ABPRE scheme for
first level ciphertext, with access to random oracles H1,H2,H3,H4,H5, then
there exists an algorithm C that solves the n-DBDHE problem with advantage ε′

within time t′ where,

ε′ ≥ 1
qH2

(

2ε − qH1

2lm+lσ
− qReEnc

p
− qDec

( qH1

(2lm+lσ )
+

1
p

))

,

t′ ≤ t + (qH3 + qH5 + (n + 2)lqSK + (n + 6)lqRK + 7qReEnc + 3qDec + 5qRD)te
+ (8qReEnc + 8qDec + 6qRD)tbp.

where l is the number of rows in access structure (M,ρ), n is the size of attribute
universe and te, tbp denote the time taken for exponentiation and pairing oper-
ations respectively.

Proof. Due to space limit, the proof is given in the full version of the paper [19].

Second Level Ciphertext Security

Theorem 2. If a (t, ε)IND-PRE-CCA adversary A has a non-negligible
advantage ε in breaking the IND-PRE-CCA security of the given KP-
ABPRE scheme for second level ciphertext, with access to the random oracles
H1,H2,H3,H4,H5, then there exists an algorithm C that solves the n-DBDHE
problem with advantage ε′ within time t′ where,

ε′ ≥ 1

qH2

(
2ε ·

(
1 − qH4

2lm

)
− qH1

2lm+lσ
− qDec

( qH1

(2lm+lσ )
+

1

p

))
,

t′ ≤ t + (qH3 + (n + 2)lqSK + (n + 6)lqRK + 3qDec + 5qRD)te + (8qDec + 6qRD)tbp.

Proof. Due to space limit, the proof is given in the full version of the paper [19].

Collusion Resistance

Theorem 3 [16]. If a unidirectional single-hop KP-ABPRE scheme is IND-
PRE-CCA secure for first level ciphertexts, then it is collusion resistant as well.
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8 Conclusion

Although several KP-ABPRE schemes have been proposed in the literature,
to the best of our knowledge, only one CCA-secure scheme due to Ge et al.
has reported the collusion resistant property. In this paper, we demonstrate a
CCA-attack on their construction. We also give a construction of the first unidi-
rectional KP-ABPRE scheme with constant size ciphertexts requiring a constant
number of exponentiations in encryption, and constant number of bilinear pair-
ing operations during decryption and re-decryption while satisfying selective
CCA-security for first-level and second level ciphertexts. Also, the definition of
collusion resistance is met wherein a colluding proxy and delegatee cannot obtain
the private key of the delegator. Our work affirmatively resolves the problem of
collusion resistance by proposing a computationally efficient collusion resistant
KP-ABPRE scheme that supports monotonic access structures for fine-grained
delegation of decryption rights.
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