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Abstract. We propose a novel mechanism to release an accurate and
differentially private estimate of the link set of social networks. Differen-
tial privacy is one of the most common notations to quantify the privacy
level of information publication. Several methods have been proposed
to publish edge set information, among which one of the notable mecha-
nisms is based on stratified sampling. While it is very scalable, social net-
work information can be significantly altered by this technique. In fact,
when we use mechanism based on stratified sampling, a totally random
network may get published even when the input network is sparse. We
aim to overcome this drawback in our work. We provide an efficient two-
stage mechanism to control the edge set size and quality independently.
To confirm the practical utility of our proposal, we apply it to the max-
imum matching problem when the edge information is spread between
two different bipartite networks. We validate through experiments that
the error induced by our framework is at least 20 times smaller than that
of the original stratified sampling based mechanism when privacy level is
5. In addition, the computation time of our framework is 3 times shorter
than the original method.

Keywords: Differential privacy · Stratified sampling · Maximum
matching

1 Introduction

With the expeditious increase in the usage of online services, huge amounts of
data are being generated everyday. Most of the generated data can be modelled
as graphs, e.g., social network data, email data, etc. In these networks, people
can be modelled as nodes and their interactions can be modelled as edges. The
analysis of such data is pivotal in the spheres of medical research, fraud detection,
recommendation engines, to name a few. However, the data owners are reluctant
to share such data over privacy concerns of the users that are part of the network.
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Several anonymization techniques have been proposed to preserve privacy of
individuals’ data, but none of them provides mathematical guarantees with the
availability of auxiliary information. Narayanan and Shmatikov in [1] proposed
a technique to break the anonymity of naively anonymized Netflix data set using
auxiliary information resulting in privacy loss of millions of users. Hence, it is
important that the data is provably anonymized (even with access to auxiliary
information) before it is released for research purposes. This motivates us to
work with differential privacy to overcome the above discussed privacy risks.

The concept of differential privacy was formally introduced in [2] by Dwork.
Differential privacy provides a mathematically provable guarantee of privacy
preservation against linkage attacks, statistical attacks and leveraging attacks.
It guarantees that the outcome of any analysis is equally likely, independent of
the presence of any single entity in the data. Therefore, the risk of identifying
private information with the availability of auxiliary information is nullified.

In this paper, we study the problem of publishing the link set of a social
network. Several techniques have been proposed to achieve this, among which
one of the notable mechanisms is based on stratified sampling [3]. While the
computation time of this technique is quite short, social network information
can significantly be altered by this technique. The published output network
may be a completely random network independent of the input network when
the input network is sparse.

1.1 Our Contribution

We introduce a stratified sampling based mechanism to publish an accurate
estimate of the edge set with strong privacy guarantees. We propose a two-stage
[ε1:ε2]-differentially private algorithm to release an anonymized, accurate esti-
mate of the true edge set. In the first stage, we develop an ε1-differentially private
algorithm to sample an estimate of the size of the un-anonymized edge set. In
the second stage, we present an ε2-differentially private algorithm to sample an
edge set of specific size sampled in the first step. The two-stage algorithm gives
us a better control over the size of the edge set independent of its quality. It
is particularly helpful when the resultant analysis on the published anonymized
graph is highly sensitive to the number of edges. To show practical utilities of
our proposed differential private mechanism, we consider a private variant of the
maximum matching problem. The maximum matching size of a graph is highly
sensitive to the presence or absence of edges in sparse graphs, although highly
invariant in dense graphs. It gives us an ideal scenario to present the utility of
our algorithm. We consider the setting in which two disjoint bipartite networks
are connected by a set of inter-connecting (edges connecting nodes in different
networks) edges. The node information of both networks and inter-connecting
edge information is public whereas the intra-edge (edges connecting nodes in
the same network) information of both the networks is private. We deal with
the problem of finding the size of the maximum matching of the union of both
the networks when one of the networks in anonymized. Comparing with the
classical stratified sampling technique in [3], we present empirical results on the
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publicly available Moreno Crime dataset [4]. We also show results on networks
synthesized from the R-MAT model [5]. We demonstrate drastic improvements
in performance in sparse graphs when one of the input networks is anonymized
with our proposed mechanism.

1.2 Related Works

There are several studies in literature aiming to protect if a particular person is
in a social network (node differential privacy) [6–8]. Our discussion in this work
focuses on hiding the information if an edge is in a graph or edge differential
privacy [9]. Though we are not currently dealing with node differential privacy,
we strongly believe that our framework can be extended to this privacy notation
as well.

Several differential privacy works have been introduced to publish specific
information of social networks. For example, Hay et al. [9] aims to output the
degree distribution of an input graph, Kenthapadi et al. [10] aims to publish
the shortest path length for all pairs of nodes, whereas Ahmed et al. [11] aims
to output the eigenvectors of the input network’s adjacency matrix. Although
we experiment with the maximum matching size, our framework is not limited
to any particular graph property. It outputs an accurate edge set of the social
network and users can derive any network information from it.

There are some works which, similar to us, aim to publish an accurate esti-
mate of the edge set to the users. Many of them are based on Kronecker graph
[12–14]. While Kronecker graph can effectively capture global information of a
social network like diameter, clusters, or degree distribution, we believe that it
cannot capture properties that need local knowledge such as shortest path or
maximum matching size. Therefore, techniques based on Kronecker graph and
this work could be complementary to each other.

We rely on maximum matching size to show the accuracy of our proposal.
Differentially private maximum matching is considered in several works such as
[15–17]. They consider a situation in which one party holds all the information,
and wants to release the maximum matching information from the entire social
network they have. On the other hand, our experimental results focus on a
situation when two parties want to exchange private information in order to
calculate the maximum matching size.

2 Preliminaries

2.1 Differential Privacy [2]

We work with the concept of private databases to define differential privacy. A
database is viewed as a collection of records with each record describing private
information of some entity. Distance between two databases is defined as the
number of records in which these two databases differ. Two databases d, d′ are
neighboring databases if they differ in exactly 1 record i.e, ‖d − d′‖1 = 1.
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Definition 1. Consider a randomized algorithm A which takes a database as
input and outputs a member of Range(A). We say that A is ε-differentially
private if, for all neighboring databases d, d′, and, for any S ⊆ Range(A), we
have Pr[A(d) ∈ S] ≤ eε Pr[A(d′) ∈ S]. where e is Euler’s number.

Informally, differential privacy bounds the amount by which output of an
algorithm can change when a single record is either added or removed to/from a
database. When a publication is under differential privacy, one cannot distinguish
between two tables different by one record by the publication, and, hence, cannot
know information of a particular person even though all other persons disclose
their information.

We discuss an algorithm that satisfies the differential privacy notation. We
begin by introducing l1-sensitivity. Suppose D is the set of all possible databases,
and the original information to be published from table d ∈ D is f(d).

Definition 2. Let f be a function from a set of databases D to the set Rk. The
l1-sensitivity of f is Δf = max

‖d−d′‖1=1
‖f(d) − f(d′)‖1.

The l1 sensitivity of a function f is the maximum change in f obtained by the
inclusion or exclusion of a single entity. In other words, it bounds the margin by
which the output needs to be altered to hide the participation of a single entity.

Exponential Mechanism. Exponential mechanism was first introduced by
McSherry and Talwar in [18]. It preserves ε-differential privacy when the output
range S of an algorithm is discrete. It maps every (database, output) pair to a
quality score given by the quality function Q : D×S → R. Then, it samples and
outputs an element s ∈ S with likelihood proportional to g(s) = exp

(
εQ(d,s)
2ΔQ

)
.

Let C =
∑

s⊆S g(s). The probability with which we output s ⊆ S is then equal
to Pr[s] = g(s)/C. Intuitively, for some fixed database d, it is likely that the
algorithm outputs an element of S with large quality score. We assign higher
scores to preferred outputs and lower scores to bad outputs.

2.2 Differential Privacy vs Social Network Privacy

Social Networks like Facebook, Twitter, or Tinder can be modelled as graphs.
Accounts (people) can be modelled as nodes and their relations can be mod-
elled as edges. The analysis of these graph structures is pivotal to provide rele-
vant recommendations and improve user experience. Such graph data has to be
anonymized before publishing it for research purposes to preserve the privacy of
users. Differential privacy can be extended to graph anonymization and provide
a provable social network privacy.

We discuss the equivalence of neighboring databases in relation to graphs.

Definition 3 (Edge Differential Privacy [14]). Graphs G and G′ are said to
be neighbors with respect to edge differential privacy if ‖E − E′‖1 = 1 where
G = (V,E) and G′ = (V,E′).
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Based on the previous definition, differential privacy notion for graphs is
similarly defined as follows:

Definition 4 (Differential Privacy on Graphs). Consider a randomized algo-
rithm A which takes a graph as input and outputs a member of Range(A). We
say that A is ε-differentially private if, for all neighboring graphs G, G′, and,
for any S ⊆ Range(A), we have Pr[A(G) ∈ S] ≤ eε Pr[A(G′) ∈ S].

Differential privacy hides the presence or absence of a data entity in neigh-
boring databases by limiting the change in output introduced by that entity. In
this case, neighboring databases are graphs that differ by one edge i.e., G and
G′ are neighboring graphs if G′ can be obtained from G by adding or removing
an edge. Because of this property, attackers cannot distinguish between a graph
with a link and a graph without. The information whether two people are linked
to each other is then protected if we have an algorithm that satisfies the notion
of edge differential privacy.

2.3 Stratified Sampling

To sample an element according to a probability distribution, standard sampling
technique [19] runs in linear time in the number of possible outcomes. If the
number of possible outcomes is exponential in the input size, standard sampling
is no longer tractable. Stratified sampling [3], however, takes advantage of the
presence of homogeneous subgroups where the probability of any two outcomes
in a homogeneous subgroup is same.

Let R be the finite set of possible outcomes and X be a discrete random
variable defined on probability space (p,R), i.e., p : x ∈ R �→ Pr(X = x).
Let (R0, R1, ..., Rk) be a partition of R into k homogeneous subgroups. For any
subgroup Ri and any two elements x, x′ ∈ Ri, we have p(x) = p(x′). Now,
according to stratified sampling, sampling from original distribution is same as:

1. Sampling a subgroup according to the relative subgroup probabilities using
the standard sampling technique.

2. Sampling an element uniformly from the chosen subgroup in step 1.

The running time of sampling is greatly enhanced depending on the number
of subgroups (denoted by k).

2.4 Matching Theory in Graphs (c.f. Chapter 7 of [20])

In this section, we introduce some basic graph definitions used in later sections.

Definition 5 (Bipartite Graph). A graph G = (V,E) is a bipartite graph if
there exists a partition of V into X and Y such that there is no edge between
two vertices in X and there is no edge between two vertices in Y .

Definition 6. A matching M of a graph G = (V,E) is a subset of edges E such
that no two edges have a common vertex. A matching M is said to be a maximum
matching if there exists no other matching M ′ of G with larger number of edges.
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2.5 Previous Work on Differential Privacy by Stratified Sampling

In the forward message of [3], the goal is to communicate a differentially private
estimate of the adjacent nodes of a specific node u in the graph G = (V,E). Let
U be the set of adjacent nodes of node u in graph G = (V,E), i.e., for all a ∈ V ,
(a, u) ∈ E ⇐⇒ a ∈ U and let U∗ be some approximation of U . The quality
function for this mechanism is then defined as Q(U∗) = |U ∩ U∗| + |U ∪ U∗|.
The probability distribution is then calculated over the power set R of all nodes
V − = (V \ {u}) according to the above quality function. A set U∗ is then
sampled from R according to this probability distribution and is communicated
as a differentially private estimate of U . From the definition of Q(U∗), it can
be observed that Q(U∗) ∈ [0, |V −|]. The number of possible quality values is
|V |, although the number of possible node sets U∗ is exponential in |V |. Hence,
stratified sampling can be used to sample U∗ from R efficiently. The probabilities
are calculated in log space since the exponents may otherwise blowup. The log
space probability is given by ln(Pr[U∗]) = εQ(U∗)

2ΔQ − ln(C). The normalizing
constant C can be calculated efficiently by calculating the number of node sets
for each possible quality value. The normalizing constant C in this case turns
out to be C = (1 + exp (ε/(2ΔQ)))|V |−1 as described in [3]. C being in the
form (1 + A)B makes it feasible to work in log space. The running time of this
framework is linear in the total number of nodes, i.e. O(|V |).

3 Proposed Frameworks

In this section, we describe the working methodology of two differentially pri-
vate frameworks. Each of the two frameworks can independently be used for
computing the differentially private estimate of the edge set of any graph. Frame-
work 1 is a direct extension of the mechanism in [3]. Framework 2 is a further
extension of Framework 1 which gives us better control over the size of the dif-
ferentially private edge set independent of its quality. We call Framework 2 as
[ε1 : ε2]-differentially private algorithm indicating the dependence of the size of
the private edgeset on ε1 and its quality on ε2.

3.1 Framework 1

In our framework, the goal is to communicate a differentially private estimate
of the edges of graph G = (V,E) when node information V is public. The
mechanism described in [3] can easily be extended to reach that goal. Let E∗ be
the differentially private estimate of E. Then, the quality function is similarly
defined as Q(E∗) = |E ∩ E∗| + |E ∪ E∗|. The probability distribution is then
calculated over power set S of all edges possible with vertex set V according to
this quality function. We adopt the same sampling technique as described [3]
and obtain differentially private estimate E∗. The running time of Framework 1
is linear in the total number of possible edges with |V | nodes, which is O(|V |2).
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3.2 Framework 2

One of the main problems we encountered with Framework 1 was that

the cardinality of (EΔE∗) is often very high even when the privacy level
is very high (ε is set to a very large value). If the analysis to be performed
on private graph is very sensitive to addition or deletion of edges, then the
private graph G = (V,E∗) is not an ideal estimate of G = (V,E).

So, we now propose a two stage mechanism to control the cardinality and quality
of the differentially private edge set E∗ independently.

– Algorithm Stage 1: Mechanism to output a differentially private estimate x
of the size of the true edge set |E|.

– Algorithm Stage 2: Mechanism to output the differentially private estimate
E∗, where |E∗| = x.

Algorithm Stage 1. This stage of the algorithm can be viewed as answering a
query when the true answer is |E|. One might think that Laplace mechanism [2],
one of the most common mechanisms, can be applied here. However, it cannot
be applied to achieve differential privacy in this case, since it might output non-
integral values whereas we need the output to be an integer that can be utilized in
Stage 2 of the algorithm. Let Et be the set of all possible edges in the graph G =
(V,E), i.e. Et = {(u, v) : u, v ∈ V }. As the integer output x is always in [0, |Et|],
the set of possible outputs is finite. The quality function for this mechanism is
defined as Q1(x) = |Et|−abs(x−|E|) where abs denotes the absolute value. The
quality value Q1(x) deteriorates as we move away from the true value |E| and
is uniquely maximized when x = |E|. We adopt the same method as described
in Framework 1 and work in log space. To calculate the log space probabilities,
we need to obtain a closed form expression for the normalizing constant C =∑|Et|

x=0 exp
(

ε1.Q1(x)
2.ΔQ1

)
= a|Et|

a−1 ·
[
a + 1 − a−|E| − a|E|−|Et|

]
, where a = exp( ε1

2.ΔQ1
).

We ignore last two terms in RHS in the above expression as they are much
smaller than a + 1. We now calculate the log space probabilities and sample the
differentially private estimate x. Note that ΔQ1 = 1.

Algorithm Stage 2. In this stage of the algorithm, we need to output a dif-
ferentially private edge set E∗ from all possible edge sets of size x. We adopt
the same quality function as described in Framework 1, which is Q2(E∗) =
|E ∩ E∗| + |E ∪ E∗|. In order to sample a differentially private estimate E∗, we
first need to find out the probability distribution over all possible edge sets of
size x. The first task is to compute the normalizing constant efficiently in order
to calculate the probabilities. We denote the quality value by q and the cardi-
nality of intersection by i, i.e. Q2(E∗) = q and |E ∩E∗| = i. From the definition
of Q2, we obtain the equality i = 1

2 (q + x + |E| − |Et|). Hence, there exists an
edge set of size x with quality value q if and only if (q+x+ |E|− |Et|) is an even
number along with other boundary conditions. If there exists an edge set with



274 M. B. Adhikari et al.

the above requirements, then such an edge set can be obtained by selecting i
edges from E and remaining (x− i) edges from (Et −E) respectively. Therefore,
the number of such edge sets with quality q is given by N(q) =

(|E|
i

)(|Et−E|
x−i

)
.

The normalizing constant is then given by

C =
∑

q

N(q) · exp
(

qε2
2ΔQ2

)
(1)

The summation above is over all possible quality values q discussed in the pre-
vious paragraph. Unfortunately, Eq. (1) does not have a closed form expression.
Since we are working in the log space, we approximate ln (C) instead of com-
puting C which can later be used to compute the log space probabilities.

For all q, let us denote sq = N(q) · exp( qε2
2ΔQ2

) and smax = max
q

sq. Then,

ln(C) = ln(smax · ∑
q

sq

smax
) = ln(smax) + ln

(∑
q exp (ln(sq) − ln(smax))

)
. We

only consider the terms for which ln(sq) − ln(smax) ≥ −α for a large constant α
and all the remaining terms are ignored. We used α = 650 in our experiments
ignoring all the values sq for which the ratio sq/smax is less than e−650 which
we think is a reasonably small value to neglect.

The second task is to sample an edge set according to this probability dis-
tribution. From the definition of Q2, it can be observed that Q2(E∗) ∈ [0, |Et|]
i.e., the number of possible quality values is (|Et| + 1), although the number of
possible edge sets is exponential. In relation to stratified sampling, a group of
edge sets with same quality value can be viewed as a homogeneous subgroup
since equal quality values induce equal probabilities. Sampling an edge set using
stratified sampling is done as follows:

– Step 1: Sample a quality value q according to the relative homogeneous sub-
group probabilities using the standard sampling technique.

– Step 2: Uniformly, sample an edge set of size x and quality value q.

Step 1 The probability Pr(q) associated with a homogeneous subgroup induced
by quality q is the sum of probabilities of all edge sets with quality q. The
probability associated with an edge set having quality q can be computed using
Pr[s] as defined in Section II where Q(d, s) = q. Therefore, Pr(q) = N(q) · Pr[s]
where s in an edge set with quality value q. The log space probability associated
with a homogeneous subgroup with quality q is then given by

ln(Pr(q)) = ln(N(q)) +
ε2q

2ΔQ2
− ln(C) (2)

The probability distribution over all possible quality values can be calculated in
O(|Et|) time and standard sampling can be done in O(|Et|) time and space.

Step 2 The challenge is to sample an edge set E∗ of size x and quality q
uniformly from all possible edge sets when the original edge set is E. Recall
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that, when |E ∩ E∗| = i, we have i = 1
2 (q + x + |E| − |Et|). For a given q and

x, the size of intersection or the number of common edges in E and E∗ is fixed
to i. The probability of selecting some set of i edges from E without repetition
is given by 1/

(|E|
i

)
. The remaining (x− i) edges of E∗ are then uniformly chosen

from the set (Et −E). The probability of selecting some set of (x− i) edges from
(Et − E) without repetition is given by 1/

(|Et−E|
x−i

)
.

We then publish the union of i and (x − i) edges as our differentially private
estimate E∗. We used the Fisher Yates Shuffling Algorithm [21] to randomly
pick a few items from a large set without repetition. Note that ΔQ2 = 1.

4 Use Case on Bipartite Matching

To demonstrate the performance of our algorithm, we consider a private variant
of the maximum matching problem. Maximum matching in bipartite graphs is a
heavily studied area with immense practical importance. The size of maximum
matching of a graph is highly sensitive to the presence or absence of edges in
sparse graphs whereas it is highly invariant in dense graphs. It presents us with
an ideal scenario to demonstrate the comparative utilities of our framework.

4.1 Problem Setting

We work in the similar setting as described in [3]. Assume that G1 = (X1, Y1, E1)
and G2 = (X2, Y2, E2) are two node disjoint bipartite networks owned by orga-
nizations I1 and I2 respectively. Although every node belongs to one of the two
bipartite networks, edges may span across both the networks. We denote the
set of edges spanning across the two networks by E12 ⊆ {(u, v) | u ∈ X1, v ∈ Y2}
and E21 ⊆ {(u, v) | u ∈ Y1, v ∈ X2}. Our privacy assumptions are as follows:

– public information : X1, Y1,X2, Y2, E12, E21

– private information known only to I1: E1

– private information known only to I2: E2

We enable one of the organizations to compute the maximum matching size
of the union of both the networks while hiding the intra-edge information of
the other network from the organization. Suppose the organization to compute
the maximum matching size is I2, then I2 will not know E1 but its differentially
private estimation of the set, denoted by E∗

1 . It then must estimate the maximum
matching size of Gu = (X1 ∪ X2, Y1 ∪ Y2, Eu) where Eu = E1 ∪ E2 ∪ E12 ∪ E21.

4.2 Practical Utility

The problem setting is useful in many practical situations. Consider a situation
when two institutions I1 and I2 want to see if a collaboration between them is
beneficial to them or their customers. If they do not collaborate, their benefits are
the maximum matching size of G1 added by the maximum matching size of G2,
while the benefits are the maximum matching size of Gu when they collaborate.
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Fig. 1. Average relative symmetric
edge difference (|E1ΔE∗

1 |/|E1|) for ε =
5 to 15, moreno crime dataset

Fig. 2. Average relative maximum
matching error for ε = 5 to 15, moreno
crime dataset

We can consider I1 and I2 as two different university departments which are
matching students with professors for graduate projects. The maximum match-
ing size is then the number of students who are matched with their preferred
professors. Two departments may then collaborate if the matching matching size
is significantly increased by joining two social networks. On the other hand, we
may want to protect if a link exists as students may not want to reveal if they
prefer one professor over others. The same setting can be applied when two air-
lines wants to decide if they should have codeshare flights or when companies
wants to decide if they should merge with each other.

5 Experimental Results

We apply the frameworks on E1 to obtain the differentially private estimate
E∗

1 and then compute the maximum matching size of G∗
u = (X1 ∪ X2, Y1 ∪

Y2, E
∗
1 ∪ E2 ∪ E12 ∪ E21). We refer to Framework 1 and Framework 2 in the

above graph plots as ‘Framework based on Previous Work’ and ‘Our Proposed
Framework’ respectively. All the experiments have been executed on Lenovo y50–
70 machine with 16 GB RAM, using python 3.6 without parallel computations.
Results in Figs. 1, 2, 3 are based on the publicly available moreno crime dataset
[4] which is randomly divided into two bipartite networks with inter and intra
edge connections as described in the above sections.

We first examine the variation of relative symmetric edge difference with
privacy leverage in Fig. 1. In this figure, privacy leverage ε for Framework 2
indicates the summation of privacy levels at Algorithm stage 1 and stage 2 i.e.,
ε = ε1 + ε2. Our framework exhibits exponential improvements in the quality of
differentially private edge set for smaller values of ε. We obtain better approx-
imations with stronger privacy guarantees i.e., average relative symmetric edge
difference is 1.56 for Framework 2 when compared to 23.49 for Framework 1
when ε = 5. Differentially private estimate in Framework 2 for ε < 5 is a bad
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approximation (but is still exponentially better than Framework 1) with relative
error close to 2. Therefore, for an edge set publication, we recommend using
ε ≥ 5.

Fig. 3. Average relat-
ive edge count (abs
(|E1| − |E∗

1 |)/E1) error
in algorithm Stage 1
for ε1 = 0.0001 to 1,
moreno crime dataset

Fig. 4. Average relative
symmetric edge difference
(|E1ΔE∗

1 |/|E1|) vs total edge
count (|Eu|) for ε = 6.5,
R-MAT generated graphs

Fig. 5. Average relative
maximum matching error
vs total edge count(|Eu|)
for ε = 6.5, RMAT gener-
ated graphs

Figure 2 shows the relation between average relative maximum matching
error and privacy leverage for ε between 5 and 15. Relative maximum matching
error is as low as 0.05 for Framework 2 whereas it is 0.15 for Framework 1 when
ε = 5. Average relative maximum matching error is quite small even for ε < 5
even though the symmetric edge difference is high owing to the fact that size of
maximum matching can be same for completely different graphs. Figure 3 shows
the variation of cardinality of differentially private edge set |E∗

1 | with privacy
leverage ε1 at stage 1 of the algorithm in Framework 2. We can see that the error
is very small for any ε1 ≥ 0.1. Therefore, we propose to set value of ε1 = 0.1.

We next report the results on the synthetic R-MAT [5] graphs. Multiple R-
MAT graphs with constant number of nodes i.e., |X1∪X2| = |Y1∪Y2| = 1024 and
edges ranging from 100 to 100000 have been generated. We further maintained
the property that |X1| = |Y1| = 512 for the divided graphs with no further
condition on the edges. We then examined the average relative symmetric edge
difference and average relative maximum matching error as a function of edge
cardinality of the union of graphs |Eu| in Fig. 4 and Fig. 5 respectively. The
relative symmetric edge difference is 0.94 for Framework 2 whereas it is 391.89
for Framework 1 when |Eu| = 5000 and ε = 6.5 proving the drastic improvement
in performance we have achieved in relatively sparse graphs.

We also validated through our experimentation that Framework 2 is around
3 times faster then Framework 1.

6 Conclusions and Future Works

In this work, we consider the case where two parties own different parts of
a social network. Their goal is to calculate certain network properties while
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preserving the information of their users. We propose a two-stage framework
that can increase the accuracy of the calculation result by up to 20 times and
reduce the computation time by 3 times.

In our work, we have considered a scenario when node information is public
and edge information is private. But many cases even require the node informa-
tion to be hidden. Also, a link might contain other information in addition to
the person who are incident on it. We believe our mechanism can be extended to
protect such private information, and we plan to do that in the future. We also
plan to compare our mechanism with techniques other than stratified sampling,
and work on different use case.
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